BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35192462)

  • 1. Pyramid Convolutional RNN for MRI Image Reconstruction.
    Chen EZ; Wang P; Chen X; Chen T; Sun S
    IEEE Trans Med Imaging; 2022 Aug; 41(8):2033-2047. PubMed ID: 35192462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPICER: Self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction.
    Hu Y; Gan W; Ying C; Wang T; Eldeniz C; Liu J; Chen Y; An H; Kamilov US
    Magn Reson Med; 2024 Sep; 92(3):1048-1063. PubMed ID: 38725383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps.
    Zhang J; Yi Z; Zhao Y; Xiao L; Hu J; Man C; Lau V; Su S; Chen F; Leong ATL; Wu EX
    Magn Reson Med; 2023 Jul; 90(1):280-294. PubMed ID: 37119514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimal control framework for joint-channel parallel MRI reconstruction without coil sensitivities.
    Bian W; Chen Y; Ye X
    Magn Reson Imaging; 2022 Jun; 89():1-11. PubMed ID: 35122984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NPB-REC: A non-parametric Bayesian deep-learning approach for undersampled MRI reconstruction with uncertainty estimation.
    Khawaled S; Freiman M
    Artif Intell Med; 2024 Mar; 149():102798. PubMed ID: 38462289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unsupervised deep learning method for multi-coil cine MRI.
    Ke Z; Cheng J; Ying L; Zheng H; Zhu Y; Liang D
    Phys Med Biol; 2020 Dec; 65(23):235041. PubMed ID: 33263316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A k-space-to-image reconstruction network for MRI using recurrent neural network.
    Oh C; Kim D; Chung JY; Han Y; Park H
    Med Phys; 2021 Jan; 48(1):193-203. PubMed ID: 33128235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Domain Neumann Network with Sensitivity Maps for Parallel MRI Reconstruction.
    Lee JH; Kang J; Oh SH; Ye DH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of hyperparameters for SMS reconstruction.
    Muftuler LT; Arpinar VE; Koch K; Bhave S; Yang B; Kaushik S; Banerjee S; Nencka A
    Magn Reson Imaging; 2020 Nov; 73():91-103. PubMed ID: 32835848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DSMENet: Detail and Structure Mutually Enhancing Network for under-sampled MRI reconstruction.
    Wang Y; Pang Y; Tong C
    Comput Biol Med; 2023 Mar; 154():106204. PubMed ID: 36716684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-splitting dynamic MRI reconstruction using multi-scale 3D convolutional sparse coding and automatic parameter selection.
    Nguyen-Duc T; Quan TM; Jeong WK
    Med Image Anal; 2019 Apr; 53():179-196. PubMed ID: 30798117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ASIC modelling of SENSE for parallel MRI.
    Qazi SA; Siddiqui MF; Jacob Wikner J; Omer H
    Comput Biol Med; 2019 Jun; 109():53-61. PubMed ID: 31035071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pose Estimation of Ultrasound Probe Using CNN and RNN with Image Reconstruction Loss.
    Miura K; Ito K; Aoki T; Ohmiya J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DIRECTION: Deep cascaded reconstruction residual-based feature modulation network for fast MRI reconstruction.
    Sun Y; Liu X; Liu Y; Jin R; Pang Y
    Magn Reson Imaging; 2024 Sep; 111():157-167. PubMed ID: 38642780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Region-of-interest undersampled MRI reconstruction: A deep convolutional neural network approach.
    Sun L; Fan Z; Ding X; Huang Y; Paisley J
    Magn Reson Imaging; 2019 Nov; 63():185-192. PubMed ID: 31352015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projection-Based cascaded U-Net model for MR image reconstruction.
    Aghabiglou A; Eksioglu EM
    Comput Methods Programs Biomed; 2021 Aug; 207():106151. PubMed ID: 34052771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.