These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3519257)

  • 1. Heat shock induction of intranuclear actin rods in cultured mammalian cells.
    Iida K; Iida H; Yahara I
    Exp Cell Res; 1986 Jul; 165(1):207-15. PubMed ID: 3519257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible induction of actin rods in mouse C3H-2K cells by incubation in salt buffers and by treatment with non-ionic detergents.
    Iida K; Yahara I
    Exp Cell Res; 1986 Jun; 164(2):492-506. PubMed ID: 3086110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent collapse of keratin filaments, aggregation of organelles, and inhibition of protein synthesis during the heat shock response in mammary epithelial cells.
    Shyy TT; Asch BB; Asch HL
    J Cell Biol; 1989 Mar; 108(3):997-1008. PubMed ID: 2466040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells.
    Nishida E; Iida K; Yonezawa N; Koyasu S; Yahara I; Sakai H
    Proc Natl Acad Sci U S A; 1987 Aug; 84(15):5262-6. PubMed ID: 3474653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin.
    Iida K; Matsumoto S; Yahara I
    Cell Struct Funct; 1992 Feb; 17(1):39-46. PubMed ID: 1586966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of a 66-kD heat shock protein associated with the process of cyst formation of a true slime mold, Physarum polycephalum.
    Shimada Y; Kasakura T; Yokota M; Miyata Y; Murofushi H; Sakai H; Yahara I; Murakami-Murofushi K
    Cell Struct Funct; 1992 Oct; 17(5):301-9. PubMed ID: 1473160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment.
    Welch WJ; Suhan JP
    J Cell Biol; 1985 Oct; 101(4):1198-211. PubMed ID: 3900086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A heat-shock-like response with cytoskeletal disruption occurs following hydrostatic pressure in MG-63 osteosarcoma cells.
    Haskin CL; Athanasiou KA; Klebe R; Cameron IL
    Biochem Cell Biol; 1993; 71(7-8):361-71. PubMed ID: 7510113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin.
    Ohta Y; Nishida E; Sakai H; Miyamoto E
    J Biol Chem; 1989 Sep; 264(27):16143-8. PubMed ID: 2777782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression.
    Mizzen LA; Welch WJ
    J Cell Biol; 1988 Apr; 106(4):1105-16. PubMed ID: 3360849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock causes the collapse of the intermediate filament cytoskeleton in Drosophila embryos.
    Walter MF; Petersen NS; Biessmann H
    Dev Genet; 1990; 11(4):270-9. PubMed ID: 2090374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-induced alterations in embryonic cytoskeletal and stress proteins precede somite malformations in rat embryos.
    Fisher BR; Heredia DJ; Brown KM
    Teratog Carcinog Mutagen; 1996; 16(1):49-64. PubMed ID: 8792533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoskeletal thermotolerance in NRK cells.
    Ohtsuka K; Liu YC; Kaneda T
    Int J Hyperthermia; 1993; 9(1):115-24. PubMed ID: 8433021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Heat shock induces simultaneous rearrangements of all known cytoskeletal filaments in normal interphase fibroblasts].
    Gavrilova LP; Korpacheva II; Semushina SG; Iashin VA
    Tsitologiia; 2012; 54(11):837-46. PubMed ID: 23402001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the thermotolerant cell. II. Effects on the intracellular distribution of heat-shock protein 70, intermediate filaments, and small nuclear ribonucleoprotein complexes.
    Welch WJ; Mizzen LA
    J Cell Biol; 1988 Apr; 106(4):1117-30. PubMed ID: 2966179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on a possible relationship between alterations in the cytoskeleton and induction of heat shock protein synthesis in mammalian cells.
    van Bergen en Henegouwen PM; Jordi WJ; van Dongen G; Ramaekers FC; Amesz H; Linnemans WA
    Int J Hyperthermia; 1985; 1(1):69-83. PubMed ID: 2426373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat shock proteins and thermotolerance; a comparison of induction kinetics.
    Subjeck JR; Sciandra JJ; Johnson RJ
    Br J Radiol; 1982 Aug; 55(656):579-84. PubMed ID: 7116088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization and disorganization of actin filaments in human epidermal keratinocytes: heat-shock treatment and recovery process.
    Kitano Y; Okada N
    Cell Tissue Res; 1990 Aug; 261(2):269-74. PubMed ID: 2401003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of heat shock protein synthesis in murine tumors during the development of thermotolerance.
    Li GC; Mak JY
    Cancer Res; 1985 Aug; 45(8):3816-24. PubMed ID: 4016752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock-induced actin polymerization, SAPK/JNK activation, and heat-shock protein expression are mediated by genistein-sensitive tyrosine kinase(s) in K562 cells.
    Han SI; Ha KS; Kang KI; Kim HD; Kang HS
    Cell Biol Int; 2000; 24(7):447-57. PubMed ID: 10875892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.