These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35192643)

  • 1. A direct collocation framework for optimal control simulation of pedaling using OpenSim.
    Park S; Caldwell GE; Umberger BR
    PLoS One; 2022; 17(2):e0264346. PubMed ID: 35192643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance criteria for generating predictive optimal control simulations of bicycle pedaling.
    Gidley AD; Marsh AP; Umberger BR
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):11-20. PubMed ID: 30398070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
    Lee LF; Umberger BR
    PeerJ; 2016; 4():e1638. PubMed ID: 26835184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of pedaling rate on muscle mechanical energy in low power recumbent pedaling using forward dynamic simulations.
    Hakansson NA; Hull ML
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):509-16. PubMed ID: 18198708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2000 Feb; 33(2):155-64. PubMed ID: 10653028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim.
    Porsa S; Lin YC; Pandy MG
    Ann Biomed Eng; 2016 Aug; 44(8):2542-2557. PubMed ID: 26715209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model.
    Neptune RR; Hull ML
    J Biomech Eng; 1998 Jun; 120(3):334-41. PubMed ID: 10412400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Which factors determine the optimal pedaling rate in sprint cycling?
    van Soest AJ; Casius LJ
    Med Sci Sports Exerc; 2000 Nov; 32(11):1927-34. PubMed ID: 11079524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical analysis of preferred pedaling rate selection in endurance cycling.
    Neptune RR; Hull ML
    J Biomech; 1999 Apr; 32(4):409-15. PubMed ID: 10213031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem.
    De Groote F; Kinney AL; Rao AV; Fregly BJ
    Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.
    Higginson JS; Neptune RR; Anderson FC
    J Biomech; 2005 Sep; 38(9):1938-42. PubMed ID: 16023483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A muscle control strategy to alter pedal force direction under multiple constraints: A simulation study.
    Park S; Umberger BR; Caldwell GE
    J Biomech; 2022 Jun; 138():111114. PubMed ID: 35576633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of "Pose" cycling on efficiency and pedaling mechanics.
    Korff T; Fletcher G; Brown D; Romer LM
    Eur J Appl Physiol; 2011 Jun; 111(6):1177-86. PubMed ID: 21127899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation.
    Kautz SA; Brown DA; Van der Loos HF; Zajac FE
    J Neurophysiol; 2002 Sep; 88(3):1308-17. PubMed ID: 12205152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of ergometer pedaling direction on peak patellofemoral joint forces.
    Bressel E
    Clin Biomech (Bristol, Avon); 2001 Jun; 16(5):431-7. PubMed ID: 11390051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle activity patterns altered during pedaling at different body orientations.
    Brown DA; Kautz SA; Dairaghi CA
    J Biomech; 1996 Oct; 29(10):1349-56. PubMed ID: 8884480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization algorithm performance in determining optimal controls in human movement analyses.
    Neptune RR
    J Biomech Eng; 1999 Apr; 121(2):249-52. PubMed ID: 10211461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermuscular coherence contributions in synergistic muscles during pedaling.
    De Marchis C; Severini G; Castronovo AM; Schmid M; Conforto S
    Exp Brain Res; 2015 Jun; 233(6):1907-19. PubMed ID: 25821181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor strategy for pedaling: muscle groups and biomechanical functions.
    Raasch CC; Zajac FE
    J Neurophysiol; 1999 Aug; 82(2):515-25. PubMed ID: 10444651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.