These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35192682)

  • 21. Resistance exercise increases human skeletal muscle AS160/TBC1D4 phosphorylation in association with enhanced leg glucose uptake during postexercise recovery.
    Dreyer HC; Drummond MJ; Glynn EL; Fujita S; Chinkes DL; Volpi E; Rasmussen BB
    J Appl Physiol (1985); 2008 Dec; 105(6):1967-74. PubMed ID: 18845784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sex and fiber type independently influence AMPK, TBC1D1, and TBC1D4 at rest and during recovery from high-intensity exercise in humans.
    Tobias IS; Lazauskas KK; Siu J; Costa PB; Coburn JW; Galpin AJ
    J Appl Physiol (1985); 2020 Feb; 128(2):350-361. PubMed ID: 31895596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation.
    Chavez JA; Roach WG; Keller SR; Lane WS; Lienhard GE
    J Biol Chem; 2008 Apr; 283(14):9187-95. PubMed ID: 18258599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rab28 is a TBC1D1/TBC1D4 substrate involved in GLUT4 trafficking.
    Zhou Z; Menzel F; Benninghoff T; Chadt A; Du C; Holman GD; Al-Hasani H
    FEBS Lett; 2017 Jan; 591(1):88-96. PubMed ID: 27929607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The RabGAPs TBC1D1 and TBC1D4 Control Uptake of Long-Chain Fatty Acids Into Skeletal Muscle via Fatty Acid Transporter SLC27A4/FATP4.
    Benninghoff T; Espelage L; Eickelschulte S; Zeinert I; Sinowenka I; Müller F; Schöndeling C; Batchelor H; Cames S; Zhou Z; Kotzka J; Chadt A; Al-Hasani H
    Diabetes; 2020 Nov; 69(11):2281-2293. PubMed ID: 32868338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of contraction-stimulated AMP-activated protein kinase inhibits contraction-stimulated increases in PAS-TBC1D1 and glucose transport without altering PAS-AS160 in rat skeletal muscle.
    Funai K; Cartee GD
    Diabetes; 2009 May; 58(5):1096-104. PubMed ID: 19208911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AKT/AMPK-mediated phosphorylation of TBC1D4 disrupts the interaction with insulin-regulated aminopeptidase.
    Eickelschulte S; Hartwig S; Leiser B; Lehr S; Joschko V; Chokkalingam M; Chadt A; Al-Hasani H
    J Biol Chem; 2021; 296():100637. PubMed ID: 33872597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism.
    Szekeres F; Chadt A; Tom RZ; Deshmukh AS; Chibalin AV; Björnholm M; Al-Hasani H; Zierath JR
    Am J Physiol Endocrinol Metab; 2012 Aug; 303(4):E524-33. PubMed ID: 22693207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle.
    An D; Toyoda T; Taylor EB; Yu H; Fujii N; Hirshman MF; Goodyear LJ
    Diabetes; 2010 Jun; 59(6):1358-65. PubMed ID: 20299473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes.
    Zhou QL; Jiang ZY; Holik J; Chawla A; Hagan GN; Leszyk J; Czech MP
    Biochem J; 2008 May; 411(3):647-55. PubMed ID: 18215134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice.
    Hargett SR; Walker NN; Keller SR
    Am J Physiol Endocrinol Metab; 2016 Feb; 310(4):E276-88. PubMed ID: 26625902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fasting potentiates insulin-mediated glucose uptake in rested and prior-contracted rat skeletal muscle.
    Kido K; Egawa T; Watanabe S; Kawanaka K; Treebak JT; Hayashi T
    Am J Physiol Endocrinol Metab; 2022 May; 322(5):E425-E435. PubMed ID: 35344394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression, phosphorylation and function of the Rab-GTPase activating protein TBC1D1 in pancreatic beta-cells.
    Rütti S; Arous C; Nica AC; Kanzaki M; Halban PA; Bouzakri K
    FEBS Lett; 2014 Jan; 588(1):15-20. PubMed ID: 24239544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction.
    Kjøbsted R; Roll JLW; Jørgensen NO; Birk JB; Foretz M; Viollet B; Chadt A; Al-Hasani H; Wojtaszewski JFP
    Diabetes; 2019 Jul; 68(7):1427-1440. PubMed ID: 31010958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Tbc1d1
    Chen Q; Xie B; Zhu S; Rong P; Sheng Y; Ducommun S; Chen L; Quan C; Li M; Sakamoto K; MacKintosh C; Chen S; Wang HY
    Diabetologia; 2017 Feb; 60(2):336-345. PubMed ID: 27826658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cooperative actions of Tbc1d1 and AS160/Tbc1d4 in GLUT4-trafficking activities.
    Hatakeyama H; Morino T; Ishii T; Kanzaki M
    J Biol Chem; 2019 Jan; 294(4):1161-1172. PubMed ID: 30482843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tbc1d1 deletion suppresses obesity in leptin-deficient mice.
    Dokas J; Chadt A; Joost HG; Al-Hasani H
    Int J Obes (Lond); 2016 Aug; 40(8):1242-9. PubMed ID: 27089993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The adaptor protein APPL2 inhibits insulin-stimulated glucose uptake by interacting with TBC1D1 in skeletal muscle.
    Cheng KK; Zhu W; Chen B; Wang Y; Wu D; Sweeney G; Wang B; Lam KS; Xu A
    Diabetes; 2014 Nov; 63(11):3748-58. PubMed ID: 24879834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. WNK1 phosphorylation sites in TBC1D1 and TBC1D4 modulate cell surface expression of GLUT1.
    Henriques AFA; Matos P; Carvalho AS; Azkargorta M; Elortza F; Matthiesen R; Jordan P
    Arch Biochem Biophys; 2020 Jan; 679():108223. PubMed ID: 31816312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice.
    Hargett SR; Walker NN; Hussain SS; Hoehn KL; Keller SR
    Am J Physiol Endocrinol Metab; 2015 Aug; 309(3):E233-45. PubMed ID: 26015432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.