BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35193023)

  • 1. Inhibitory effects of thiol compounds on theaflavin browning and structural analysis of the causative substances.
    Narai-Kanayama A; Chiku K; Ono H; Momoi T; Hiwatashi-Kanno M; Kobayashi A; Matsuda H; Yoshida M; Nakayama T
    Food Chem; 2022 Aug; 384():132488. PubMed ID: 35193023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of black tea polyphenol, theaflavin, and identification of theanaphthoquinone as its major radical reaction product.
    Jhoo JW; Lo CY; Li S; Sang S; Ang CY; Heinze TM; Ho CT
    J Agric Food Chem; 2005 Jul; 53(15):6146-50. PubMed ID: 16029009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins.
    Li Y; Shibahara A; Matsuo Y; Tanaka T; Kouno I
    J Nat Prod; 2010 Jan; 73(1):33-9. PubMed ID: 20014758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two types of oxidative dimerization of the black tea polyphenol theaflavin.
    Tanaka T; Inoue K; Betsumiya Y; Mine C; Kouno I
    J Agric Food Chem; 2001 Dec; 49(12):5785-9. PubMed ID: 11743764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Black tea polyphenol theaflavin as promising antioxidant and potential copper chelator.
    Sharma N; Phan HT; Chikae M; Takamura Y; Azo-Oussou AF; Vestergaard MC
    J Sci Food Agric; 2020 May; 100(7):3126-3135. PubMed ID: 32086808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of iron(III) with theaflavin: complexation and oxidative products.
    O'Coinceanainn M; Bonnely S; Baderschneider B; Hynes MJ
    J Inorg Biochem; 2004 Apr; 98(4):657-63. PubMed ID: 15041246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation.
    Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and quantification of adducts between oxidized rosmarinic acid and thiol compounds by UHPLC-LTQ-Orbitrap and MALDI-TOF/TOF tandem mass spectrometry.
    Tang CB; Zhang WG; Dai C; Li HX; Xu XL; Zhou GH
    J Agric Food Chem; 2015 Jan; 63(3):902-11. PubMed ID: 25541907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction.
    Baker LM; Baker PR; Golin-Bisello F; Schopfer FJ; Fink M; Woodcock SR; Branchaud BP; Radi R; Freeman BA
    J Biol Chem; 2007 Oct; 282(42):31085-93. PubMed ID: 17720974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Important role of the 3-mercaptopropionamide moiety in glutathione: promoting effect on decomposition of the adduct of glutathione with the oxoammonium ion of TEMPO.
    Maeda H; Wu HY; Yamauchi Y; Ohmori H
    J Org Chem; 2005 Oct; 70(21):8338-43. PubMed ID: 16209576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New degradation mechanism of black tea pigment theaflavin involving condensation with epigallocatechin-3-O-gallate.
    Tanaka T; Yasumatsu M; Hirotani M; Matsuo Y; Li N; Zhu HT; Saito Y; Ishimaru K; Zhang YJ
    Food Chem; 2022 Feb; 370():131326. PubMed ID: 34656020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theaflavin-3-gallate and theaflavin-3'-gallate, polyphenols in black tea with prooxidant properties.
    Babich H; Gottesman RT; Liebling EJ; Schuck AG
    Basic Clin Pharmacol Toxicol; 2008 Jul; 103(1):66-74. PubMed ID: 18346048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins.
    Li Y; Jongberg S; Andersen ML; Davies MJ; Lund MN
    Free Radic Biol Med; 2016 Aug; 97():148-157. PubMed ID: 27212016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophilic properties of patulin. N-acetylcysteine and glutathione adducts.
    Fliege R; Metzler M
    Chem Res Toxicol; 2000 May; 13(5):373-81. PubMed ID: 10813654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Configuration of thiols dictates their ability to promote iron-induced reactive oxygen species generation.
    Yang EY; Campbell A; Bondy SC
    Redox Rep; 2000; 5(6):371-5. PubMed ID: 11140748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of aluminium with purpurogallin and theaflavin digallate.
    O'Coinceanainn M; Astill C; Baderschneider B
    J Inorg Biochem; 2003 Sep; 96(4):463-8. PubMed ID: 13678812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postharvest application of thiol compounds affects surface browning and antioxidant activity of fresh-cut potatoes.
    Cerit İ; Pfaff A; Ercal N; Demirkol O
    J Food Biochem; 2020 Jul; ():e13378. PubMed ID: 32729123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol-redox antioxidants protect against lung vascular endothelial cytoskeletal alterations caused by pulmonary fibrosis inducer, bleomycin: comparison between classical thiol-protectant, N-acetyl-L-cysteine, and novel thiol antioxidant, N,N'-bis-2-mercaptoethyl isophthalamide.
    Patel RB; Kotha SR; Sauers LA; Malireddy S; Gurney TO; Gupta NN; Elton TS; Magalang UJ; Marsh CB; Haley BE; Parinandi NL
    Toxicol Mech Methods; 2012 Jun; 22(5):383-96. PubMed ID: 22409285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Theaflavin-Type Chlorogenic Acid Derivatives Identified in Black Tea.
    Zhang S; Yang C; Idehen E; Shi L; Lv L; Sang S
    J Agric Food Chem; 2018 Apr; 66(13):3402-3407. PubMed ID: 29534564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water electrolyte promoted oxidation of functional thiol groups.
    Lauwers K; Breynaert E; Rombouts I; Delcour JA; Kirschhock CE
    Food Chem; 2016 Apr; 197 Pt B():1235-9. PubMed ID: 26675862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.