These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35193212)

  • 1. Quantum-parametric-oscillator heat engines in squeezed thermal baths: Foundational theoretical issues.
    Arısoy O; Hsiang JT; Hu BL
    Phys Rev E; 2022 Jan; 105(1-1):014108. PubMed ID: 35193212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.
    Kato A; Tanimura Y
    J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact Markovian kinetic equation for a quantum Brownian oscillator.
    Tay BA; Ordonez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016120. PubMed ID: 16486229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment.
    Chou CH; Yu T; Hu BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011112. PubMed ID: 18351823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Markovian Quantum Dynamics in a Squeezed Reservoir.
    Link V; Strunz WT; Luoma K
    Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V; Müstecaplıoğlu ÖE
    Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damped harmonic oscillator: pure states of the bath and exact master equations.
    Pereverzev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026111. PubMed ID: 14525053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum bath effects on nonequilibrium heat transport in model molecular junctions.
    Carpio-Martínez P; Hanna G
    J Chem Phys; 2021 Mar; 154(9):094108. PubMed ID: 33685175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants.
    El Makouri A; Slaoui A; Ahl Laamara R
    Phys Rev E; 2023 Oct; 108(4-1):044114. PubMed ID: 37978648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical control of quantum heat engines using exceptional points.
    Zhang JW; Zhang JQ; Ding GY; Li JC; Bu JT; Wang B; Yan LL; Su SL; Chen L; Nori F; Özdemir ŞK; Zhou F; Jing H; Feng M
    Nat Commun; 2022 Oct; 13(1):6225. PubMed ID: 36266331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Brownian motion: Drude and Ohmic baths as continuum limits of the Rubin model.
    Das A; Dhar A; Santra I; Satpathi U; Sinha S
    Phys Rev E; 2020 Dec; 102(6-1):062130. PubMed ID: 33466102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dynamical framework for Brownian heat engines.
    Agarwal GS; Chaturvedi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entanglement Dynamics of Coupled Quantum Oscillators in Independent NonMarkovian Baths.
    Hsiang JT; Arısoy O; Hu BL
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state quantum transport through an anharmonic oscillator strongly coupled to two heat reservoirs.
    Chen T; Balachandran V; Guo C; Poletti D
    Phys Rev E; 2020 Jul; 102(1-1):012155. PubMed ID: 32794992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K
    Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum engine efficiency bound beyond the second law of thermodynamics.
    Niedenzu W; Mukherjee V; Ghosh A; Kofman AG; Kurizki G
    Nat Commun; 2018 Jan; 9(1):165. PubMed ID: 29323109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of a Quantum System Interacting with White Non-Gaussian Baths: Poisson Noise Master Equation.
    Funo K; Ishizaki A
    Phys Rev Lett; 2024 Apr; 132(17):170402. PubMed ID: 38728715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams.
    Koyanagi S; Tanimura Y
    J Chem Phys; 2022 Aug; 157(8):084110. PubMed ID: 36050026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lindbladian approximation beyond ultraweak coupling.
    Becker T; Wu LN; Eckardt A
    Phys Rev E; 2021 Jul; 104(1-1):014110. PubMed ID: 34412241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Markovian dynamics of fermionic and bosonic systems coupled to several heat baths.
    Hovhannisyan AA; Sargsyan VV; Adamian GG; Antonenko NV; Lacroix D
    Phys Rev E; 2018 Mar; 97(3-1):032134. PubMed ID: 29776062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.