These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35193214)

  • 1. Power statistics of Otto heat engines with the Mpemba effect.
    Lin J; Li K; He J; Ren J; Wang J
    Phys Rev E; 2022 Jan; 105(1-1):014104. PubMed ID: 35193214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mpemba effect in inertial suspensions.
    Takada S; Hayakawa H; Santos A
    Phys Rev E; 2021 Mar; 103(3-1):032901. PubMed ID: 33862769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse.
    Lu Z; Raz O
    Proc Natl Acad Sci U S A; 2017 May; 114(20):5083-5088. PubMed ID: 28461467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exponentially faster cooling in a colloidal system.
    Kumar A; Bechhoefer J
    Nature; 2020 Aug; 584(7819):64-68. PubMed ID: 32760048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mpemba effect of a mean-field system: The phase transition time.
    Yang ZY; Hou JX
    Phys Rev E; 2022 Jan; 105(1-1):014119. PubMed ID: 35193204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical model for the Mpemba effect through the canonical first-order phase transition.
    Zhang S; Hou JX
    Phys Rev E; 2022 Sep; 106(3-1):034131. PubMed ID: 36266910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Markovian Mpemba effect in mean-field systems.
    Yang ZY; Hou JX
    Phys Rev E; 2020 May; 101(5-1):052106. PubMed ID: 32575203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous heating in a colloidal system.
    Kumar A; Chétrite R; Bechhoefer J
    Proc Natl Acad Sci U S A; 2022 Feb; 119(5):. PubMed ID: 35078935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal versus entropic Mpemba effect in molecular gases with nonlinear drag.
    Megías A; Santos A; Prados A
    Phys Rev E; 2022 May; 105(5-1):054140. PubMed ID: 35706208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K
    Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y; Li K; He J; Wang J
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction.
    Lee S; Ha M; Park JM; Jeong H
    Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mpemba effect in driven granular Maxwell gases.
    Biswas A; Prasad VV; Raz O; Rajesh R
    Phys Rev E; 2020 Jul; 102(1-1):012906. PubMed ID: 32794966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical control of quantum heat engines using exceptional points.
    Zhang JW; Zhang JQ; Ding GY; Li JC; Bu JT; Wang B; Yan LL; Su SL; Chen L; Nori F; Özdemir ŞK; Zhou F; Jing H; Feng M
    Nat Commun; 2022 Oct; 13(1):6225. PubMed ID: 36266331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Questioning the Mpemba effect: hot water does not cool more quickly than cold.
    Burridge HC; Linden PF
    Sci Rep; 2016 Nov; 6():37665. PubMed ID: 27883034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When the Hotter Cools More Quickly: Mpemba Effect in Granular Fluids.
    Lasanta A; Vega Reyes F; Prados A; Santos A
    Phys Rev Lett; 2017 Oct; 119(14):148001. PubMed ID: 29053323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.
    Izumida Y; Okuda K
    Phys Rev Lett; 2014 May; 112(18):180603. PubMed ID: 24856684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.