These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35193240)

  • 1. Ergodic property of random diffusivity system with trapping events.
    Wang X; Chen Y
    Phys Rev E; 2022 Jan; 105(1-1):014106. PubMed ID: 35193240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ergodic criterion of a random diffusivity model.
    Zhan Z; Wang X
    Phys Rev E; 2024 Apr; 109(4-1):044115. PubMed ID: 38755829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes.
    Cherstvy AG; Metzler R
    Phys Chem Chem Phys; 2013 Dec; 15(46):20220-35. PubMed ID: 24162164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lévy-walk-like Langevin dynamics with random parameters.
    Chen Y; Wang X; Ge M
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38198676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application.
    Alban-Chacón FE; Lamilla-Rubio EA; Alvarez-Alvarado MS
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity.
    Cherstvy AG; Chechkin AV; Metzler R
    Soft Matter; 2014 Mar; 10(10):1591-601. PubMed ID: 24652104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertia triggers nonergodicity of fractional Brownian motion.
    Cherstvy AG; Wang W; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024115. PubMed ID: 34525594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes.
    Wang W; Cherstvy AG; Kantz H; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024105. PubMed ID: 34525678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation.
    Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R
    Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics.
    Li Y; Suleiman K; Xu Y
    Phys Rev E; 2024 Jan; 109(1-1):014139. PubMed ID: 38366530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist.
    Meroz Y; Sokolov IM; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010101. PubMed ID: 20365308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous diffusion, non-Gaussianity, and nonergodicity for subordinated fractional Brownian motion with a drift.
    Liang Y; Wang W; Metzler R
    Phys Rev E; 2023 Aug; 108(2-1):024143. PubMed ID: 37723819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes.
    Cherstvy AG; Metzler R
    J Chem Phys; 2015 Apr; 142(14):144105. PubMed ID: 25877560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence of ergodicity and nonergodicity in the aging two-state random walks.
    Liu J; Jin Y; Bao JD; Chen X
    Soft Matter; 2022 Nov; 18(45):8687-8699. PubMed ID: 36349834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking.
    Burov S; Jeon JH; Metzler R; Barkai E
    Phys Chem Chem Phys; 2011 Feb; 13(5):1800-12. PubMed ID: 21203639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Langevin equation with fluctuating diffusivity: A two-state model.
    Miyaguchi T; Akimoto T; Yamamoto E
    Phys Rev E; 2016 Jul; 94(1-1):012109. PubMed ID: 27575079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weak ergodicity breaking and aging of chaotic transport in Hamiltonian systems.
    Albers T; Radons G
    Phys Rev Lett; 2014 Oct; 113(18):184101. PubMed ID: 25396371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional Feynman-Kac equation for weak ergodicity breaking.
    Carmi S; Barkai E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061104. PubMed ID: 22304037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.