These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35193257)

  • 1. Quality of uncertainty estimates from neural network potential ensembles.
    Kahle L; Zipoli F
    Phys Rev E; 2022 Jan; 105(1-2):015311. PubMed ID: 35193257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph neural network interatomic potential ensembles with calibrated aleatoric and epistemic uncertainty on energy and forces.
    Busk J; Schmidt MN; Winther O; Vegge T; Jørgensen PB
    Phys Chem Chem Phys; 2023 Sep; 25(37):25828-25837. PubMed ID: 37724552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast uncertainty estimates in deep learning interatomic potentials.
    Zhu A; Batzner S; Musaelian A; Kozinsky B
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37102453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of optoelectronic properties of Cu
    Selvaratnam B; Koodali RT; Miró P
    Phys Chem Chem Phys; 2020 Jul; 22(26):14910-14917. PubMed ID: 32584353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Atomic-Resolution Uncertainty Estimation for Neural Network Potentials Using a Replica Ensemble.
    Jeong W; Yoo D; Lee K; Jung J; Han S
    J Phys Chem Lett; 2020 Aug; 11(15):6090-6096. PubMed ID: 32598159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep machine learning interatomic potential for liquid silica.
    Balyakin IA; Rempel SV; Ryltsev RE; Rempel AA
    Phys Rev E; 2020 Nov; 102(5-1):052125. PubMed ID: 33327164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case.
    Staub R; Gantzer P; Harabuchi Y; Maeda S; Varnek A
    Molecules; 2023 May; 28(11):. PubMed ID: 37298952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Scalable Uncertainty Estimation Methods for Deep Learning-Based Molecular Property Prediction.
    Scalia G; Grambow CA; Pernici B; Li YP; Green WH
    J Chem Inf Model; 2020 Jun; 60(6):2697-2717. PubMed ID: 32243154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls.
    Thaler S; Doehner G; Zavadlav J
    J Chem Theory Comput; 2023 Jul; 19(14):4520-4532. PubMed ID: 37014758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning.
    Nomura Y; Tanaka S; Wang J; Shirato H; Shimizu S; Xing L
    Phys Med Biol; 2021 Mar; 66(6):065029. PubMed ID: 33626513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Intermolecular Interactions with Exchange-Hole Dipole Moment Dispersion Corrections to Neural Network Potentials.
    Tu NTP; Williamson S; Johnson ER; Rowley CN
    J Phys Chem B; 2024 Sep; 128(35):8290-8302. PubMed ID: 39166778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active sampling for neural network potentials: Accelerated simulations of shear-induced deformation in Cu-Ni multilayers.
    Sprueill HW; Bilbrey JA; Pang Q; Sushko PV
    J Chem Phys; 2023 Mar; 158(11):114103. PubMed ID: 36948793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty propagation for dropout-based Bayesian neural networks.
    Mae Y; Kumagai W; Kanamori T
    Neural Netw; 2021 Dec; 144():394-406. PubMed ID: 34562813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using beta binomials to estimate classification uncertainty for ensemble models.
    Clark RD; Liang W; Lee AC; Lawless MS; Fraczkiewicz R; Waldman M
    J Cheminform; 2014; 6():34. PubMed ID: 24987464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty quantification in atomistic simulations of silicon using interatomic potentials.
    Best IR; Sullivan TJ; Kermode JR
    J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39140443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization.
    Pyle RJ; Hughes RR; Ali AAS; Wilcox PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2339-2351. PubMed ID: 35604965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning.
    Zhang Y; Lee AA
    Chem Sci; 2019 Sep; 10(35):8154-8163. PubMed ID: 31857882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitating ab initio configurational sampling of multicomponent solids using an on-lattice neural network model and active learning.
    Kasamatsu S; Motoyama Y; Yoshimi K; Matsumoto U; Kuwabara A; Ogawa T
    J Chem Phys; 2022 Sep; 157(10):104114. PubMed ID: 36109212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-cutoff machine-learned potential for condensed organic systems obtained
    Kahle L; Minisini B; Bui T; First JT; Buda C; Goldman T; Wimmer E
    Phys Chem Chem Phys; 2024 Aug; 26(34):22665-22680. PubMed ID: 39158948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep evidential learning for radiotherapy dose prediction.
    Tan HS; Wang K; McBeth R
    Comput Biol Med; 2024 Nov; 182():109172. PubMed ID: 39317056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.