These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35193268)

  • 1. Dynamical origin for winner-take-all competition in a biological network of the hippocampal dentate gyrus.
    Kim SY; Lim W
    Phys Rev E; 2022 Jan; 105(1-1):014418. PubMed ID: 35193268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disynaptic effect of hilar cells on pattern separation in a spiking neural network of hippocampal dentate gyrus.
    Kim SY; Lim W
    Cogn Neurodyn; 2022 Dec; 16(6):1427-1447. PubMed ID: 36408073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population and individual firing behaviors in sparsely synchronized rhythms in the hippocampal dentate gyrus.
    Kim SY; Lim W
    Cogn Neurodyn; 2022 Jun; 16(3):643-665. PubMed ID: 35603046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of Entorhinal Input and Local Inhibitory Network in the Hippocampus at the Origin of Slow Inhibition in Granule Cells.
    Mircheva Y; Peralta MR; Tóth K
    J Neurosci; 2019 Aug; 39(33):6399-6413. PubMed ID: 31182636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kv4.1, a Key Ion Channel For Low Frequency Firing of Dentate Granule Cells, Is Crucial for Pattern Separation.
    Kim KR; Lee SY; Yoon SH; Kim Y; Jeong HJ; Lee S; Suh YH; Kang JS; Cho H; Lee SH; Kim MH; Ho WK
    J Neurosci; 2020 Mar; 40(11):2200-2214. PubMed ID: 32047055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CA3 "backprojection" to the dentate gyrus.
    Scharfman HE
    Prog Brain Res; 2007; 163():627-37. PubMed ID: 17765742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop.
    Cutsuridis V; Poirazi P
    Neurobiol Learn Mem; 2015 Apr; 120():69-83. PubMed ID: 25721691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A million-plus neuron model of the hippocampal dentate gyrus: Dependency of spatio-temporal network dynamics on topography.
    Hendrickson PJ; Yu GJ; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4713-6. PubMed ID: 26737346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Million-Plus Neuron Model of the Hippocampal Dentate Gyrus: Critical Role for Topography in Determining Spatiotemporal Network Dynamics.
    Hendrickson PJ; Yu GJ; Song D; Berger TW
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):199-209. PubMed ID: 26087482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential implications of a monosynaptic pathway from mossy cells to adult-born granule cells of the dentate gyrus.
    Scharfman HE; Bernstein HL
    Front Syst Neurosci; 2015; 9():112. PubMed ID: 26347618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corruption of the dentate gyrus by "dominant" granule cells: Implications for dentate gyrus function in health and disease.
    Scharfman HE; Myers CE
    Neurobiol Learn Mem; 2016 Mar; 129():69-82. PubMed ID: 26391451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for hilar cells in pattern separation in the dentate gyrus: a computational approach.
    Myers CE; Scharfman HE
    Hippocampus; 2009 Apr; 19(4):321-37. PubMed ID: 18958849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus.
    Kneisler TB; Dingledine R
    Hippocampus; 1995; 5(3):151-64. PubMed ID: 7550611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connectivity and synaptic features of hilar mossy cells and their effects on granule cell activity along the hippocampal longitudinal axis.
    Abdulmajeed WI; Wang KY; Wu JW; Ajibola MI; Cheng IH; Lien CC
    J Physiol; 2022 Jul; 600(14):3355-3381. PubMed ID: 35671148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local and Long-Range Circuit Connections to Hilar Mossy Cells in the Dentate Gyrus.
    Sun Y; Grieco SF; Holmes TC; Xu X
    eNeuro; 2017; 4(2):. PubMed ID: 28451637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of adult-born immature granule cells on pattern separation in the hippocampal dentate gyrus.
    Kim SY; Lim W
    Cogn Neurodyn; 2024 Aug; 18(4):2077-2093. PubMed ID: 39104672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Input-output relations in the entorhinal cortex-dentate-hippocampal system: evidence for a non-linear transfer of signals.
    Bartesaghi R; Migliore M; Gessi T
    Neuroscience; 2006 Sep; 142(1):247-65. PubMed ID: 16844310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adult neurogenesis modifies excitability of the dentate gyrus.
    Ikrar T; Guo N; He K; Besnard A; Levinson S; Hill A; Lee HK; Hen R; Xu X; Sahay A
    Front Neural Circuits; 2013; 7():204. PubMed ID: 24421758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in understanding hilar mossy cells of the dentate gyrus.
    Scharfman HE
    Cell Tissue Res; 2018 Sep; 373(3):643-652. PubMed ID: 29222692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Bursts of Individual Granule Cells Functionally Rearrange Feedforward Inhibition.
    Neubrandt M; Oláh VJ; Brunner J; Marosi EL; Soltesz I; Szabadics J
    J Neurosci; 2018 Feb; 38(7):1711-1724. PubMed ID: 29335356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.