These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35193280)

  • 1. Emergence of oscillations in fixed-energy sandpile models on complex networks.
    Fazli D; Azimi-Tafreshi N
    Phys Rev E; 2022 Jan; 105(1-1):014303. PubMed ID: 35193280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorbing phase transitions in deterministic fixed-energy sandpile models.
    Park SC
    Phys Rev E; 2018 Mar; 97(3-1):032105. PubMed ID: 29776064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flooding transition in the topography of toppling surfaces of stochastic and rotational sandpile models.
    Ahmed JA; Santra SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031111. PubMed ID: 22587042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sandpiles with height restrictions.
    Dickman R; Tomé T; de Oliveira MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016111. PubMed ID: 12241430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence of Stochastic Oscillations and Self-Organized Criticality in a Neuronal Network: Sandpile Model Application.
    Saeedi A; Jannesari M; Gharibzadeh S; Bakouie F
    Neural Comput; 2018 Apr; 30(4):1132-1149. PubMed ID: 29381441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organized quantization and oscillations on continuous fixed-energy sandpiles.
    Niehues J; Jensen GG; Haerter JO
    Phys Rev E; 2022 Mar; 105(3-1):034314. PubMed ID: 35428112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical investigation of self-organized criticality in neural networks.
    Droste F; Do AL; Gross T
    J R Soc Interface; 2013 Jan; 10(78):20120558. PubMed ID: 22977096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of deterministic and stochastic sandpile models in a rotational sandpile model.
    Santra SB; Chanu SR; Deb D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041122. PubMed ID: 17500880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise toppling balance, quenched disorder, and universality for sandpiles.
    Karmakar R; Manna SS; Stella AL
    Phys Rev Lett; 2005 Mar; 94(8):088002. PubMed ID: 15783937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations.
    Wang SJ; Hilgetag CC; Zhou C
    Front Comput Neurosci; 2011; 5():30. PubMed ID: 21852971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorbing-state phase transitions in fixed-energy sandpiles.
    Vespignani A; Dickman R; Munoz MA; Zapperi S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4564-82. PubMed ID: 11088996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuously varying critical exponents in a sandpile model with internal disorder.
    Benyoussef A; El Kenz A; Khfifi M; Loulidi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041302. PubMed ID: 12443194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterned and disordered continuous Abelian sandpile model.
    Azimi-Tafreshi N; Moghimi-Araghi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046115. PubMed ID: 19905398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorbing states and elastic interfaces in random media: two equivalent descriptions of self-organized criticality.
    Bonachela JA; Chaté H; Dornic I; Muñoz MA
    Phys Rev Lett; 2007 Apr; 98(15):155702. PubMed ID: 17501362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organization of complex networks as a dynamical system.
    Aoki T; Yawata K; Aoyagi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012908. PubMed ID: 25679683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of random initial conditions on the dynamical scaling behaviors of a fixed-energy Manna sandpile model in one dimension.
    Kwon S; Kim JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012149. PubMed ID: 25679612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crossover from rotational to stochastic sandpile universality in the random rotational sandpile model.
    Bhaumik H; Ahmed JA; Santra SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062136. PubMed ID: 25615073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation transitions in a coevolving nonlinear voter model.
    Min B; Miguel MS
    Sci Rep; 2017 Oct; 7(1):12864. PubMed ID: 28993664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of the correspondence between the dissipative and fixed-energy Abelian sandpile models.
    Poghosyan SS; Poghosyan VS; Priezzhev VB; Ruelle P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066119. PubMed ID: 22304167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern formation in a metastable, gradient-driven sandpile.
    Anton L; Geyer HB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016115. PubMed ID: 14995675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.