These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35193312)

  • 1. Quasiequilibrium multistate cellular automata.
    Pazzona FG; Pireddu G; Demontis P
    Phys Rev E; 2022 Jan; 105(1-1):014116. PubMed ID: 35193312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronous equilibrium model for the diffusion of mutually exclusive particles in a heterogeneous lattice of adsorption sites.
    Pazzona FG; Demontis P; Suffritti GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063306. PubMed ID: 23848805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining off-lattice Monte Carlo and cellular automata for the simulation of hard-sphere systems.
    Pazzona FG; Demontis P; Suffritti GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023307. PubMed ID: 25215851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conciliating synchronicity with spatial discretization, exclusion, interactions, and detailed balance.
    Pazzona FG; Demontis P; Suffritti GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062114. PubMed ID: 24483393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic cellular automata.
    Agapie A; Andreica A; Giuclea M
    J Comput Biol; 2014 Sep; 21(9):699-708. PubMed ID: 24999557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing a cellular automaton as an empirical model to study static and dynamic properties of molecules adsorbed in zeolites.
    Demontis P; Pazzona FG; Suffritti GB
    J Phys Chem B; 2008 Oct; 112(39):12444-52. PubMed ID: 18774847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lattice-gas cellular automaton to model diffusion in restricted geometries.
    Demontis P; Pazzona FG; Suffritti GB
    J Phys Chem B; 2006 Jul; 110(27):13554-9. PubMed ID: 16821882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation.
    Nilmeier JP; Crooks GE; Minh DD; Chodera JD
    Proc Natl Acad Sci U S A; 2011 Nov; 108(45):E1009-18. PubMed ID: 22025687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cellular Automata-based Model for Simulating Restitution Property in a Single Heart Cell.
    Sabzpoushan SH; Pourhasanzade F
    J Med Signals Sens; 2011 Jan; 1(1):19-23. PubMed ID: 22606655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration.
    Nava-Sedeño JM; Hatzikirou H; Peruani F; Deutsch A
    J Math Biol; 2017 Nov; 75(5):1075-1100. PubMed ID: 28243720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiparticle moves in acceptance rate optimized Monte Carlo.
    Neumann T; Danilov D; Wenzel W
    J Comput Chem; 2015 Nov; 36(30):2236-45. PubMed ID: 26459216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic Ising models with self-interaction: Sequential and parallel updating.
    Nareddy VR; Machta J
    Phys Rev E; 2020 Jan; 101(1-1):012122. PubMed ID: 32069610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved estimation of density of states for Monte Carlo sampling via MBAR.
    Xu Y; Rodger PM
    J Chem Theory Comput; 2015 Oct; 11(10):4565-72. PubMed ID: 26574248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seven-state rotation-symmetric number-conserving cellular automaton that is not isomorphic to any septenary one.
    Wolnik B; Nenca A; Dzedzej A; De Baets B
    Phys Rev E; 2023 Feb; 107(2-1):024211. PubMed ID: 36932560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact solution of the "Rule 150" reversible cellular automaton.
    Wilkinson JWP; Prosen T; Garrahan JP
    Phys Rev E; 2022 Mar; 105(3-1):034124. PubMed ID: 35428052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictability in cellular automata.
    Agapie A; Andreica A; Chira C; Giuclea M
    PLoS One; 2014; 9(10):e108177. PubMed ID: 25271778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-scale method for modeling degradation of bioresorbable polyesters.
    Zhang T; Zhou S; Gao X; Yang Z; Sun L; Zhang D
    Acta Biomater; 2017 Mar; 50():462-475. PubMed ID: 28017865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion in tight confinement: a lattice-gas cellular automaton approach. I. Structural equilibrium properties.
    Demontis P; Pazzona FG; Suffritti GB
    J Chem Phys; 2007 May; 126(19):194709. PubMed ID: 17523830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Properties by Quantum Monte Carlo: An Investigation on the Role of the Wave Function Ansatz and the Basis Set in the Water Molecule.
    Zen A; Luo Y; Sorella S; Guidoni L
    J Chem Theory Comput; 2013 Oct; 9(10):4332-4350. PubMed ID: 24526929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxiliary-Field Monte Carlo Method to Tackle Strong Interactions and Frustration in Lattice Bosons.
    Malpetti D; Roscilde T
    Phys Rev Lett; 2017 Jul; 119(4):040602. PubMed ID: 29341763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.