These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Variational method for finding periodic orbits in a general flow. Lan Y; Cvitanović P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016217. PubMed ID: 14995703 [TBL] [Abstract][Full Text] [Related]
6. Network analysis of chaotic systems through unstable periodic orbits. Kobayashi MU; Saiki Y Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482 [TBL] [Abstract][Full Text] [Related]
7. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
8. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems. Saiki Y; Yamada M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096 [TBL] [Abstract][Full Text] [Related]
9. Dynamical behaviors and invariant recurrent patterns of Kuramoto-Sivashinsky equation with time-periodic forces. Liu D Chaos; 2024 Jul; 34(7):. PubMed ID: 39038470 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity of long periodic orbits of chaotic systems. Lasagna D Phys Rev E; 2020 Nov; 102(5-1):052220. PubMed ID: 33327162 [TBL] [Abstract][Full Text] [Related]
11. Inferring symbolic dynamics of chaotic flows from persistence. Yalnız G; Budanur NB Chaos; 2020 Mar; 30(3):033109. PubMed ID: 32237765 [TBL] [Abstract][Full Text] [Related]
12. On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows. Crofts JJ; Davidchack RL Chaos; 2009 Sep; 19(3):033138. PubMed ID: 19792018 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation. Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089 [TBL] [Abstract][Full Text] [Related]
14. Data-driven modeling and forecasting of chaotic dynamics on inertial manifolds constructed as spectral submanifolds. Liu A; Axås J; Haller G Chaos; 2024 Mar; 34(3):. PubMed ID: 38531092 [TBL] [Abstract][Full Text] [Related]
15. Manifold structures of unstable periodic orbits and the appearance of periodic windows in chaotic systems. Kobayashi MU; Saiki Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022904. PubMed ID: 25353542 [TBL] [Abstract][Full Text] [Related]
16. Feedback control of chaotic systems using multiple shooting shadowing and application to Kuramoto-Sivashinsky equation. Shawki K; Papadakis G Proc Math Phys Eng Sci; 2020 Aug; 476(2240):20200322. PubMed ID: 32922158 [TBL] [Abstract][Full Text] [Related]
17. Optimal periodic orbits of continuous time chaotic systems. Yang TH; Hunt BR; Ott E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1950-9. PubMed ID: 11088659 [TBL] [Abstract][Full Text] [Related]
18. Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation. Rempel EL; Chian AC; Macau EE; Rosa RR Chaos; 2004 Sep; 14(3):545-56. PubMed ID: 15446964 [TBL] [Abstract][Full Text] [Related]
19. Recurrent flow patterns as a basis for two-dimensional turbulence: Predicting statistics from structures. Page J; Norgaard P; Brenner MP; Kerswell RR Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2320007121. PubMed ID: 38820003 [TBL] [Abstract][Full Text] [Related]
20. Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis. Qi G; Gou T; Hu J; Chen G Chaos; 2021 Jan; 31(1):013101. PubMed ID: 33754774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]