These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35193324)

  • 21. Motion of red blood cells near microvessel walls: effects of a porous wall layer.
    Hariprasad DS; Secomb TW
    J Fluid Mech; 2012 Aug; 705():195-212. PubMed ID: 23493820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A few upstream bifurcations drive the spatial distribution of red blood cells in model microfluidic networks.
    Merlo A; Berg M; Duru P; Risso F; Davit Y; Lorthois S
    Soft Matter; 2022 Feb; 18(7):1463-1478. PubMed ID: 35088062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of vessel diameter on red cell distribution at microvascular bifurcations.
    Carr RT; Wickham LL
    Microvasc Res; 1991 Mar; 41(2):184-96. PubMed ID: 2051959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emergent cell-free layer asymmetry and biased haematocrit partition in a biomimetic vascular network of successive bifurcations.
    Zhou Q; Fidalgo J; Bernabeu MO; Oliveira MSN; Krüger T
    Soft Matter; 2021 Apr; 17(13):3619-3633. PubMed ID: 33459318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution.
    Yalcin O; Wang Q; Johnson PC; Palmer AF; Cabrales P
    Biorheology; 2011; 48(5):277-91. PubMed ID: 22433569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of capillary dilation on the distribution of red blood cells in artificial networks.
    Schmid F; Reichold J; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(7):H733-42. PubMed ID: 25617356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles.
    Ong PK; Namgung B; Johnson PC; Kim S
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1870-8. PubMed ID: 20348228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A low-dimensional model for the red blood cell.
    Pan W; Caswell B; Karniadakis GE
    Soft Matter; 2010 Sep; 6(18):. PubMed ID: 24282440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local vs. Global Blood Flow Modulation in Artificial Microvascular Networks: Effects on Red Blood Cell Distribution and Partitioning.
    Mantegazza A; Ungari M; Clavica F; Obrist D
    Front Physiol; 2020; 11():566273. PubMed ID: 33123027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonuniform red cell distribution in 20 to 100 micrometers bifurcations.
    Fenton BM; Carr RT; Cokelet GR
    Microvasc Res; 1985 Jan; 29(1):103-26. PubMed ID: 2580216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-phase model for prediction of cell-free layer width in blood flow.
    Namgung B; Ju M; Cabrales P; Kim S
    Microvasc Res; 2013 Jan; 85():68-76. PubMed ID: 23116701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blood flow in small tubes: quantifying the transition to the non-continuum regime.
    Lei H; Fedosov DA; Caswell B; Karniadakis GE
    J Fluid Mech; 2013 May; 722():. PubMed ID: 24363456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations.
    Enden G; Popel AS
    J Biomech Eng; 1992 Aug; 114(3):398-405. PubMed ID: 1522734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels.
    Zhang J
    Microcirculation; 2011 Oct; 18(7):562-73. PubMed ID: 21624001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic Precapillary Flow Patterns for Enhancing Blood Plasma Separation: A Preliminary Study.
    Namgung B; Tan JK; Wong PA; Park SY; Leo HL; Kim S
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation.
    Leble V; Lima R; Dias R; Fernandes C; Ishikawa T; Imai Y; Yamaguchi T
    Biomicrofluidics; 2011 Dec; 5(4):44120-4412015. PubMed ID: 22685504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cell-free layer in microvascular blood flow.
    Kim S; Ong PK; Yalcin O; Intaglietta M; Johnson PC
    Biorheology; 2009; 46(3):181-9. PubMed ID: 19581726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of stochastic fluctuations in the cell free layer on nitric oxide bioavailability.
    Park SW; Intaglietta M; Tartakovsky DM
    Front Comput Neurosci; 2015; 9():131. PubMed ID: 26578944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.