These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35193578)

  • 1. Machine learning and bioinformatics analysis revealed classification and potential treatment strategy in stage 3-4 NSCLC patients.
    Li C; Tian C; Zeng Y; Liang J; Yang Q; Gu F; Hu Y; Liu L
    BMC Med Genomics; 2022 Feb; 15(1):33. PubMed ID: 35193578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Validation of a Tumor Microenvironment-Related Gene Signature for Prognostic Prediction in Advanced-Stage Non-Small-Cell Lung Cancer.
    Zhang X; Shi X; Zhao H; Jia X; Yang Y
    Biomed Res Int; 2021; 2021():8864436. PubMed ID: 33860055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-identified stemness features and constructed stemness-related subtype with prognosis, chemotherapy, and immunotherapy responses for non-small cell lung cancer patients.
    Liu M; Zhou R; Zou W; Yang Z; Li Q; Chen Z; Jiang L; Zhang J
    Stem Cell Res Ther; 2023 Sep; 14(1):238. PubMed ID: 37674202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the characteristics of immune cell infiltration in lung adenocarcinoma via bioinformatics to predict the effect of immunotherapy.
    Liao Y; He D; Wen F
    Immunogenetics; 2021 Oct; 73(5):369-380. PubMed ID: 34302518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the immune cell infiltration landscape in pancreatic cancer to assist immunotherapy.
    Wang Z; Zou W; Wang F; Zhang G; Chen K; Hu M; Liu R
    Future Oncol; 2021 Nov; 17(31):4131-4143. PubMed ID: 34346253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive analyses of the heterogeneity and prognostic significance of tumor-infiltrating immune cells in non-small-cell lung cancer: Development and validation of an individualized prognostic model.
    Pang Z; Chen X; Wang Y; Wang Y; Yan T; Wan J; Du J
    Int Immunopharmacol; 2020 Sep; 86():106744. PubMed ID: 32623229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning based combination of multi-omics data for subgroup identification in non-small cell lung cancer.
    Khadirnaikar S; Shukla S; Prasanna SRM
    Sci Rep; 2023 Mar; 13(1):4636. PubMed ID: 36944673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive mutation signature of immunotherapy benefits in NSCLC based on machine learning algorithms.
    Liu Z; Lin G; Yan Z; Li L; Wu X; Shi J; He J; Zhao L; Liang H; Wang W
    Front Immunol; 2022; 13():989275. PubMed ID: 36238300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning reveals a PD-L1-independent prediction of response to immunotherapy of non-small cell lung cancer by gene expression context.
    Wiesweg M; Mairinger F; Reis H; Goetz M; Kollmeier J; Misch D; Stephan-Falkenau S; Mairinger T; Walter RFH; Hager T; Metzenmacher M; Eberhardt WEE; Zaun G; Köster J; Stuschke M; Aigner C; Darwiche K; Schmid KW; Rahmann S; Schuler M
    Eur J Cancer; 2020 Nov; 140():76-85. PubMed ID: 33059196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A macrophage related signature for predicting prognosis and drug sensitivity in ovarian cancer based on integrative machine learning.
    Zhao B; Pei L
    BMC Med Genomics; 2023 Oct; 16(1):230. PubMed ID: 37784081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stemness Refines the Classification of Colorectal Cancer With Stratified Prognosis, Multi-Omics Landscape, Potential Mechanisms, and Treatment Options.
    Liu Z; Xu H; Weng S; Ren Y; Han X
    Front Immunol; 2022; 13():828330. PubMed ID: 35154148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Explainable Machine Learning Models and a Novel SFRP2
    Yang Z; Zhou D; Huang J
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients.
    Chen D; Liu J; Zang L; Xiao T; Zhang X; Li Z; Zhu H; Gao W; Yu X
    Int J Biol Sci; 2022; 18(1):360-373. PubMed ID: 34975338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying CpG methylation signature as a promising biomarker for recurrence and immunotherapy in non-small-cell lung carcinoma.
    Luo R; Song J; Xiao X; Xie Z; Zhao Z; Zhang W; Miao S; Tang Y; Ran L
    Aging (Albany NY); 2020 Jul; 12(14):14649-14676. PubMed ID: 32723974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune Infiltrating Cells-Derived Risk Signature Based on Large-scale Analysis Defines Immune Landscape and Predicts Immunotherapy Responses in Glioma Tumor Microenvironment.
    Zhang N; Zhang H; Wang Z; Dai Z; Zhang X; Cheng Q; Liu Z
    Front Immunol; 2021; 12():691811. PubMed ID: 34489938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer.
    Cai WY; Dong ZN; Fu XT; Lin LY; Wang L; Ye GD; Luo QC; Chen YC
    Theranostics; 2020; 10(19):8633-8647. PubMed ID: 32754268
    [No Abstract]   [Full Text] [Related]  

  • 17. Bioinformatics Analysis of GFAP as a Potential Key Regulator in Different Immune Phenotypes of Prostate Cancer.
    Yao W; Li X; Jia Z; Gu C; Jin Z; Wang J; Yuan B; Yang J
    Biomed Res Int; 2021; 2021():1466255. PubMed ID: 34222466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients.
    Wang Z; Wang Y; Yang T; Xing H; Wang Y; Gao L; Guo X; Xing B; Wang Y; Ma W
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prognostic characterization of immune molecular subtypes in non-small cell lung cancer to immunotherapy.
    Li C; Pan J; Luo J; Chen X
    BMC Pulm Med; 2021 Nov; 21(1):389. PubMed ID: 34844602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular heterogeneity of anti-PD-1/PD-L1 immunotherapy efficacy is correlated with tumor immune microenvironment in East Asian patients with non-small cell lung cancer.
    Jin R; Liu C; Zheng S; Wang X; Feng X; Li H; Sun N; He J
    Cancer Biol Med; 2020 Aug; 17(3):768-781. PubMed ID: 32944405
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.