BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35194026)

  • 1. Organic electrochemical neurons and synapses with ion mediated spiking.
    Harikesh PC; Yang CY; Tu D; Gerasimov JY; Dar AM; Armada-Moreira A; Massetti M; Kroon R; Bliman D; Olsson R; Stavrinidou E; Berggren M; Fabiano S
    Nat Commun; 2022 Feb; 13(1):901. PubMed ID: 35194026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing.
    Liu Q; Liu Y; Li J; Lau C; Wu F; Zhang A; Li Z; Chen M; Fu H; Draper J; Cao X; Zhou C
    ACS Appl Mater Interfaces; 2019 May; 11(18):16749-16757. PubMed ID: 31025562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors.
    Qian C; Sun J; Kong LA; Gou G; Yang J; He J; Gao Y; Wan Q
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26169-26175. PubMed ID: 27608136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons.
    Harikesh PC; Yang CY; Wu HY; Zhang S; Donahue MJ; Caravaca AS; Huang JD; Olofsson PS; Berggren M; Tu D; Fabiano S
    Nat Mater; 2023 Feb; 22(2):242-248. PubMed ID: 36635590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing.
    Wang TY; He ZY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhou P; Zhang DW
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.
    Yu H; Wei H; Gong J; Han H; Ma M; Wang Y; Xu W
    Small; 2021 Mar; 17(9):e2000041. PubMed ID: 32452636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-terminal ionic-gated low-power silicon nanowire synaptic transistors with dendritic functions for neuromorphic systems.
    Li X; Yu B; Wang B; Bao L; Zhang B; Li H; Yu Z; Zhang T; Yang Y; Huang R; Wu Y; Li M
    Nanoscale; 2020 Aug; 12(30):16348-16358. PubMed ID: 32725043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supported Lipid Bilayers Coupled to Organic Neuromorphic Devices Modulate Short-Term Plasticity in Biomimetic Synapses.
    Lubrano C; Bruno U; Ausilio C; Santoro F
    Adv Mater; 2022 Apr; 34(15):e2110194. PubMed ID: 35174916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Aqueous Electrolyte Gated Artificial Synapse with Synaptic Plasticity Selectively Mediated by Biomolecules.
    Xu X; Zhang H; Shao L; Ma R; Guo M; Liu Y; Zhao Y
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202302723. PubMed ID: 37178394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fully Solution-Printed Photosynaptic Transistor Array with Ultralow Energy Consumption for Artificial-Vision Neural Networks.
    Shi J; Jie J; Deng W; Luo G; Fang X; Xiao Y; Zhang Y; Zhang X; Zhang X
    Adv Mater; 2022 May; 34(18):e2200380. PubMed ID: 35243701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption.
    Xu W; Min SY; Hwang H; Lee TW
    Sci Adv; 2016 Jun; 2(6):e1501326. PubMed ID: 27386556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons.
    Balamur R; Eren GO; Kaleli HN; Karatum O; Kaya L; Hasanreisoglu M; Nizamoglu S
    Adv Sci (Weinh); 2024 May; 11(20):e2306097. PubMed ID: 38514908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory.
    Wang Y; Huang W; Zhang Z; Fan L; Huang Q; Wang J; Zhang Y; Zhang M
    Nanoscale; 2021 Jul; 13(26):11360-11369. PubMed ID: 34096562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives.
    Pan X; Jin T; Gao J; Han C; Shi Y; Chen W
    Small; 2020 Aug; 16(34):e2001504. PubMed ID: 32734644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems.
    Broccard FD; Joshi S; Wang J; Cauwenberghs G
    J Neural Eng; 2017 Aug; 14(4):041002. PubMed ID: 28573983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.