These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35194186)

  • 1. CRISPR editing as a therapeutic strategy for Duchenne muscular dystrophy-anti-Cas9 immune response casts its shadow over safety and efficacy.
    Dowling JJ
    Gene Ther; 2022 Nov; 29(10-11):575-577. PubMed ID: 35194186
    [No Abstract]   [Full Text] [Related]  

  • 2. Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles.
    Li S; Du M; Deng J; Deng G; Li J; Song Z; Han H
    Acta Biomater; 2022 Dec; 154():597-607. PubMed ID: 36243370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy.
    Nelson CE; Wu Y; Gemberling MP; Oliver ML; Waller MA; Bohning JD; Robinson-Hamm JN; Bulaklak K; Castellanos Rivera RM; Collier JH; Asokan A; Gersbach CA
    Nat Med; 2019 Mar; 25(3):427-432. PubMed ID: 30778238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prime Editing Permits the Introduction of Specific Mutations in the Gene Responsible for Duchenne Muscular Dystrophy.
    Happi Mbakam C; Rousseau J; Tremblay G; Yameogo P; Tremblay JP
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing.
    Aslesh T; Erkut E; Yokota T
    Expert Opin Biol Ther; 2021 Aug; 21(8):1049-1061. PubMed ID: 33401973
    [No Abstract]   [Full Text] [Related]  

  • 6. CRISPR/Cas correction of muscular dystrophies.
    Zhang Y; Nishiyama T; Olson EN; Bassel-Duby R
    Exp Cell Res; 2021 Nov; 408(1):112844. PubMed ID: 34571006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-based genome editing for the modification of multiple duplications that cause Duchenne muscular dystrophy.
    Wang DN; Wang ZQ; Jin M; Lin MT; Wang N
    Gene Ther; 2022 Dec; 29(12):730-737. PubMed ID: 35534612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Modeling of Skeletal Muscle Diseases Using the CRISPR/Cas9 System in Rats.
    Nakamura K; Tanaka T; Yamanouchi K
    Methods Mol Biol; 2023; 2640():277-285. PubMed ID: 36995602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives.
    Chen G; Wei T; Yang H; Li G; Li H
    Cells; 2022 Sep; 11(19):. PubMed ID: 36230926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular disease: CRISPR/Cas9 gene-editing platform corrects mutations associated with Duchenne muscular dystrophy.
    Wood H
    Nat Rev Neurol; 2015 Apr; 11(4):184. PubMed ID: 25752950
    [No Abstract]   [Full Text] [Related]  

  • 11. Gene Editing for Duchenne Muscular Dystrophy Using the CRISPR/Cas9 Technology: The Importance of Fine-tuning the Approach.
    Tremblay JP; Iyombe-Engembe JP; Duchêne B; Ouellet DL
    Mol Ther; 2016 Nov; 24(11):1888-1889. PubMed ID: 27916992
    [No Abstract]   [Full Text] [Related]  

  • 12. CRISPR technologies for the treatment of Duchenne muscular dystrophy.
    Choi E; Koo T
    Mol Ther; 2021 Nov; 29(11):3179-3191. PubMed ID: 33823301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing.
    Hanson B; Wood MJA; Roberts TC
    RNA Biol; 2021 Jul; 18(7):1048-1062. PubMed ID: 33472516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 editing of directly reprogrammed myogenic progenitors restores dystrophin expression in a mouse model of muscular dystrophy.
    Domenig SA; Bundschuh N; Lenardič A; Ghosh A; Kim I; Qabrati X; D'Hulst G; Bar-Nur O
    Stem Cell Reports; 2022 Feb; 17(2):321-336. PubMed ID: 34995499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale genome editing based on high-capacity adenovectors and CRISPR-Cas9 nucleases rescues full-length dystrophin synthesis in DMD muscle cells.
    Tasca F; Brescia M; Wang Q; Liu J; Janssen JM; Szuhai K; Gonçalves MAFV
    Nucleic Acids Res; 2022 Jul; 50(13):7761-7782. PubMed ID: 35776127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of a Dystrophin Mutant in Dog by Nuclear Transfer Using CRISPR/Cas9-Mediated Somatic Cells: A Preliminary Study.
    Oh HJ; Chung E; Kim J; Kim MJ; Kim GA; Lee SH; Ra K; Eom K; Park S; Chae JH; Kim JS; Lee BC
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35270040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells.
    Young CS; Hicks MR; Ermolova NV; Nakano H; Jan M; Younesi S; Karumbayaram S; Kumagai-Cresse C; Wang D; Zack JA; Kohn DB; Nakano A; Nelson SF; Miceli MC; Spencer MJ; Pyle AD
    Cell Stem Cell; 2016 Apr; 18(4):533-40. PubMed ID: 26877224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transiently expressed CRISPR/Cas9 induces wild-type dystrophin in vitro in DMD patient myoblasts carrying duplications.
    Pini V; Mariot V; Dumonceaux J; Counsell J; O'Neill HC; Farmer S; Conti F; Muntoni F
    Sci Rep; 2022 Mar; 12(1):3756. PubMed ID: 35260651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy.
    Cai A; Kong X
    Hum Gene Ther Methods; 2019 Jun; 30(3):71-80. PubMed ID: 31062609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction of muscular dystrophies by CRISPR gene editing.
    Chemello F; Bassel-Duby R; Olson EN
    J Clin Invest; 2020 Jun; 130(6):2766-2776. PubMed ID: 32478678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.