These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35194186)
21. Therapeutic Applications of CRISPR/Cas for Duchenne Muscular Dystrophy. Wong TWY; Cohn RD Curr Gene Ther; 2017; 17(4):301-308. PubMed ID: 29173172 [TBL] [Abstract][Full Text] [Related]
22. Neuromuscular disease: Genome editing shows promise in an in vivo model of Duchenne muscular dystrophy. Wood H Nat Rev Neurol; 2016 Feb; 12(2):63. PubMed ID: 26782331 [No Abstract] [Full Text] [Related]
23. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Li HL; Fujimoto N; Sasakawa N; Shirai S; Ohkame T; Sakuma T; Tanaka M; Amano N; Watanabe A; Sakurai H; Yamamoto T; Yamanaka S; Hotta A Stem Cell Reports; 2015 Jan; 4(1):143-154. PubMed ID: 25434822 [TBL] [Abstract][Full Text] [Related]
25. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Sui T; Lau YS; Liu D; Liu T; Xu L; Gao Y; Lai L; Li Z; Han R Dis Model Mech; 2018 Jun; 11(6):. PubMed ID: 29871865 [TBL] [Abstract][Full Text] [Related]
26. CRISPR/Cas9-Based Dystrophin Restoration Reveals a Novel Role for Dystrophin in Bioenergetics and Stress Resistance of Muscle Progenitors. Matre PR; Mu X; Wu J; Danila D; Hall MA; Kolonin MG; Darabi R; Huard J Stem Cells; 2019 Dec; 37(12):1615-1628. PubMed ID: 31574188 [TBL] [Abstract][Full Text] [Related]
27. Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy. Mata López S; Balog-Alvarez C; Vitha S; Bettis AK; Canessa EH; Kornegay JN; Nghiem PP PLoS One; 2020; 15(1):e0228072. PubMed ID: 31961902 [TBL] [Abstract][Full Text] [Related]
28. Live-imaging of revertant and therapeutically restored dystrophin in the Dmd Petkova MV; Stantzou A; Morin A; Petrova O; Morales-Gonzalez S; Seifert F; Bellec-Dyevre J; Manoliu T; Goyenvalle A; Garcia L; Richard I; Laplace-Builhé C; Schuelke M; Amthor H Neuropathol Appl Neurobiol; 2020 Oct; 46(6):602-614. PubMed ID: 32573804 [TBL] [Abstract][Full Text] [Related]
29. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Nelson CE; Hakim CH; Ousterout DG; Thakore PI; Moreb EA; Castellanos Rivera RM; Madhavan S; Pan X; Ran FA; Yan WX; Asokan A; Zhang F; Duan D; Gersbach CA Science; 2016 Jan; 351(6271):403-7. PubMed ID: 26721684 [TBL] [Abstract][Full Text] [Related]
30. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Wang JZ; Wu P; Shi ZM; Xu YL; Liu ZJ Brain Dev; 2017 Aug; 39(7):547-556. PubMed ID: 28390761 [TBL] [Abstract][Full Text] [Related]
31. A CRISPR edit for heart disease. King A Nature; 2018 Mar; 555(7695):S23-S25. PubMed ID: 29517035 [No Abstract] [Full Text] [Related]
32. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping. Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778 [TBL] [Abstract][Full Text] [Related]
33. Targeted genome editing in vivo corrects a Dmd duplication restoring wild-type dystrophin expression. Maino E; Wojtal D; Evagelou SL; Farheen A; Wong TWY; Lindsay K; Scott O; Rizvi SZ; Hyatt E; Rok M; Visuvanathan S; Chiodo A; Schneeweiss M; Ivakine EA; Cohn RD EMBO Mol Med; 2021 May; 13(5):e13228. PubMed ID: 33724658 [TBL] [Abstract][Full Text] [Related]
34. Toward the correction of muscular dystrophy by gene editing. Olson EN Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34074727 [TBL] [Abstract][Full Text] [Related]
35. Duchenne muscular dystrophy cell culture models created by CRISPR/Cas9 gene editing and their application in drug screening. Soblechero-Martín P; Albiasu-Arteta E; Anton-Martinez A; de la Puente-Ovejero L; Garcia-Jimenez I; González-Iglesias G; Larrañaga-Aiestaran I; López-Martínez A; Poyatos-García J; Ruiz-Del-Yerro E; Gonzalez F; Arechavala-Gomeza V Sci Rep; 2021 Sep; 11(1):18188. PubMed ID: 34521928 [TBL] [Abstract][Full Text] [Related]
36. Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy. Atmanli A; Chai AC; Cui M; Wang Z; Nishiyama T; Bassel-Duby R; Olson EN Circ Res; 2021 Sep; 129(6):602-616. PubMed ID: 34372664 [TBL] [Abstract][Full Text] [Related]
37. Adeno-Associated Virus-Mediated Delivery of CRISPR for Cardiac Gene Editing in Mice. Xu L; Gao Y; Lau YS; Han R J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124643 [TBL] [Abstract][Full Text] [Related]
38. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Kenjo E; Hozumi H; Makita Y; Iwabuchi KA; Fujimoto N; Matsumoto S; Kimura M; Amano Y; Ifuku M; Naoe Y; Inukai N; Hotta A Nat Commun; 2021 Dec; 12(1):7101. PubMed ID: 34880218 [TBL] [Abstract][Full Text] [Related]
39. Cautious welcome for gene editing of Duchenne muscular dystrophy in animal model. Hawkes N BMJ; 2016 Jan; 351():h7033. PubMed ID: 26729900 [No Abstract] [Full Text] [Related]
40. The emerging role of viral vectors as vehicles for DMD gene editing. Maggio I; Chen X; Gonçalves MA Genome Med; 2016 May; 8(1):59. PubMed ID: 27215286 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]