BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35194200)

  • 41. Stage- and lineage-specific expression of the HOXA10 homeobox gene in normal and leukemic hematopoietic cells.
    Lawrence HJ; Sauvageau G; Ahmadi N; Lopez AR; LeBeau MM; Link M; Humphries K; Largman C
    Exp Hematol; 1995 Oct; 23(11):1160-6. PubMed ID: 7556525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Over expression of ubiquitin-conjugating enzyme E2O in bone marrow mesenchymal stromal cells partially attenuates acute myeloid leukaemia progression.
    Tian C; Chen Z; Wang L; Si J; Kang J; Li Y; Zheng Y; Gao Y; Nuermaimaiti R; You MJ; Zheng G
    Br J Haematol; 2023 Feb; 200(4):476-488. PubMed ID: 36345807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Cytogenetic characteristics of hematopoietic and stromal progenitor cells in myelodysplastic syndrome].
    Pimenova MA; Parovichnikova EN; Kokhno AV; Domracheva EV; Manakova TE; Mal'tseva IuS; Konnova ML; Shishigina LA; Savchenko VG
    Ter Arkh; 2013; 85(7):34-42. PubMed ID: 24137945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of myeloperoxidase in acute myeloid leukemia blasts mirrors the distinct DNA methylation pattern involving the downregulation of DNA methyltransferase DNMT3B.
    Itonaga H; Imanishi D; Wong YF; Sato S; Ando K; Sawayama Y; Sasaki D; Tsuruda K; Hasegawa H; Imaizumi Y; Taguchi J; Tsushima H; Yoshida S; Fukushima T; Hata T; Moriuchi Y; Yanagihara K; Miyazaki Y
    Leukemia; 2014 Jul; 28(7):1459-66. PubMed ID: 24457336
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bone marrow niche in the myelodysplastic syndromes.
    Cogle CR; Saki N; Khodadi E; Li J; Shahjahani M; Azizidoost S
    Leuk Res; 2015 Oct; 39(10):1020-7. PubMed ID: 26276090
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immunoreactivity of MIC2 (CD99) and terminal deoxynucleotidyl transferase in bone marrow clot and core specimens of acute myeloid leukemias and myelodysplastic syndromes.
    Kang LC; Dunphy CH
    Arch Pathol Lab Med; 2006 Feb; 130(2):153-7. PubMed ID: 16454553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring of methylation changes in 9p21 region in patients with myelodysplastic syndromes and acute myeloid leukemia.
    Cechova H; Lassuthova P; Novakova L; Belickova M; Stemberkova R; Jencik J; Stankova M; Hrabakova P; Pegova K; Zizkova H; Cermak J
    Neoplasma; 2012; 59(2):168-74. PubMed ID: 22248274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors.
    Chandran P; Le Y; Li Y; Sabloff M; Mehic J; Rosu-Myles M; Allan DS
    Leuk Res; 2015 Apr; 39(4):486-93. PubMed ID: 25703353
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evi-1 and MDS1-Evi-1 genes in pathogenesis of myelodysplastic syndromes and post-MDS acute myeloid leukemia.
    Xu K; Wang L; Hao Y; Shao Z; Meng Q; Li K; Chao H; Tang K; Wang L
    Chin Med J (Engl); 1999 Dec; 112(12):1112-8. PubMed ID: 11721451
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes.
    Falconi G; Fabiani E; Fianchi L; Criscuolo M; Raffaelli CS; Bellesi S; Hohaus S; Voso MT; D'Alò F; Leone G
    Exp Hematol; 2016 Jan; 44(1):75-83.e1-4. PubMed ID: 26521017
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome.
    Huang HH; Chen FY; Chou WC; Hou HA; Ko BS; Lin CT; Tang JL; Li CC; Yao M; Tsay W; Hsu SC; Wu SJ; Chen CY; Huang SY; Tseng MH; Tien HF; Chen RH
    BMC Cancer; 2019 Jun; 19(1):617. PubMed ID: 31234830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy.
    Poon Z; Dighe N; Venkatesan SS; Cheung AMS; Fan X; Bari S; Hota M; Ghosh S; Hwang WYK
    Leukemia; 2019 Jun; 33(6):1487-1500. PubMed ID: 30575819
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative analyses of DAPK1 methylation in AML and MDS.
    Claus R; Hackanson B; Poetsch AR; Zucknick M; Sonnet M; Blagitko-Dorfs N; Hiller J; Wilop S; Brümmendorf TH; Galm O; Platzbecker U; Byrd JC; Döhner K; Döhner H; Lübbert M; Plass C
    Int J Cancer; 2012 Jul; 131(2):E138-42. PubMed ID: 21918973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The functional interplay of transcription factors and cell adhesion molecules in experimental myelodysplasia including hematopoietic stem progenitor compartment.
    Daw S; Law S
    Mol Cell Biochem; 2021 Feb; 476(2):535-551. PubMed ID: 33011884
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bone marrow-derived mesenchymal stem/stromal cells in patients with acute myeloid leukemia reveal transcriptome alterations and deficiency in cellular vitality.
    Zhang L; Chi Y; Wei Y; Zhang W; Wang F; Zhang L; Zou L; Song B; Zhao X; Han Z
    Stem Cell Res Ther; 2021 Jun; 12(1):365. PubMed ID: 34174939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Progressive chromatin repression and promoter methylation of CTNNA1 associated with advanced myeloid malignancies.
    Ye Y; McDevitt MA; Guo M; Zhang W; Galm O; Gore SD; Karp JE; Maciejewski JP; Kowalski J; Tsai HL; Gondek LP; Tsai HC; Wang X; Hooker C; Smith BD; Carraway HE; Herman JG
    Cancer Res; 2009 Nov; 69(21):8482-90. PubMed ID: 19826047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Induction of gene expression by 5-Aza-2'-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms.
    Schmelz K; Sattler N; Wagner M; Lübbert M; Dörken B; Tamm I
    Leukemia; 2005 Jan; 19(1):103-11. PubMed ID: 15510208
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clonal evolutions during long-term cultures of bone marrow from de novo acute myeloid leukaemia with trilineage myelodysplasia and with myelodysplastic remission marrow.
    Tamura S; Kanamaru A; Takemoto Y; Kakishita E; Nagai K
    Br J Haematol; 1993 Jun; 84(2):219-26. PubMed ID: 8398821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prognostic role of immunohistochemical analysis of 5 mc in myelodysplastic syndromes.
    Poloni A; Goteri G; Zizzi A; Serrani F; Trappolini S; Costantini B; Mariani M; Olivieri A; Catarini M; Centurioni R; Alesiani F; Giantomassi F; Stramazzotti D; Biagetti S; Alfonsi S; Berardinelli E; Leoni P
    Eur J Haematol; 2013 Sep; 91(3):219-227. PubMed ID: 23679560
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes.
    Benetatos L; Hatzimichael E; Dasoula A; Dranitsaris G; Tsiara S; Syrrou M; Georgiou I; Bourantas KL
    Leuk Res; 2010 Feb; 34(2):148-53. PubMed ID: 19595458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.