These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35194351)

  • 1. A new study on two different vaccinated fractional-order COVID-19 models via numerical algorithms.
    Zeb A; Kumar P; Erturk VS; Sitthiwirattham T
    J King Saud Univ Sci; 2022 Feb; ():101914. PubMed ID: 35194351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on fractional HBV model through singular and non-singular derivatives.
    Kumar S; Chauhan RP; Aly AA; Momani S; Hadid S
    Eur Phys J Spec Top; 2022; 231(10):1885-1904. PubMed ID: 35251498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A case study of Covid-19 epidemic in India via new generalised Caputo type fractional derivatives.
    Kumar P; Suat Erturk V
    Math Methods Appl Sci; 2021 Feb; ():. PubMed ID: 33821068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A FRACTIONAL ORDER HIV/AIDS MODEL USING CAPUTO-FABRIZIO OPERATOR.
    Unaegbu EN; Onah IS; Oyesanya MO
    Afr J Infect Dis; 2021; 15(2 Suppl):1-18. PubMed ID: 34595381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator.
    Rahman MU; Ahmad S; Matoog RT; Alshehri NA; Khan T
    Chaos Solitons Fractals; 2021 Sep; 150():111121. PubMed ID: 34108819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional Model and Numerical Algorithms for Predicting COVID-19 with Isolation and Quarantine Strategies.
    Alla Hamou A; Azroul E; Lamrani Alaoui A
    Int J Appl Comput Math; 2021; 7(4):142. PubMed ID: 34226872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China.
    Yadav RP; Renu Verma
    Chaos Solitons Fractals; 2020 Nov; 140():110124. PubMed ID: 32834636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fractional-order model with different strains of COVID-19.
    Baba IA; Rihan FA
    Physica A; 2022 Oct; 603():127813. PubMed ID: 35765370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of a novel coronavirus (2019-nCOV) system with variable Caputo-Fabrizio fractional order.
    Verma P; Kumar M
    Chaos Solitons Fractals; 2021 Jan; 142():110451. PubMed ID: 33519113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and graphical simulation of the non-linear fractional dynamical system of bone mineralization.
    Agarwal R; Airan P; Sajid M
    Math Biosci Eng; 2024 Mar; 21(4):5138-5163. PubMed ID: 38872530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A delayed plant disease model with Caputo fractional derivatives.
    Kumar P; Baleanu D; Erturk VS; Inc M; Govindaraj V
    Adv Contin Discret Model; 2022; 2022(1):11. PubMed ID: 35450199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative.
    Baleanu D; Mohammadi H; Rezapour S
    Adv Differ Equ; 2020; 2020(1):299. PubMed ID: 32572336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fractional model of cancer-immune system with Caputo and Caputo-Fabrizio derivatives.
    Uçar E; Özdemir N
    Eur Phys J Plus; 2021; 136(1):43. PubMed ID: 33425638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives.
    Erturk VS; Kumar P
    Chaos Solitons Fractals; 2020 Oct; 139():110280. PubMed ID: 32982080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of fractal-fractional Alzheimer's disease mathematical model in sense of Caputo derivative.
    Yadav P; Jahan S; Nisar KS
    AIMS Public Health; 2024; 11(2):399-419. PubMed ID: 39027396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of mathematical model involving nonlinear systems of Caputo-Fabrizio fractional differential equation.
    Kebede SG; Lakoud AG
    Bound Value Probl; 2023; 2023(1):44. PubMed ID: 37096017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative.
    Tuan NH; Mohammadi H; Rezapour S
    Chaos Solitons Fractals; 2020 Nov; 140():110107. PubMed ID: 33519107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On chaos control of nonlinear fractional Newton-Leipnik system via fractional Caputo-Fabrizio derivatives.
    Almutairi N; Saber S
    Sci Rep; 2023 Dec; 13(1):22726. PubMed ID: 38123599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data.
    Nisar KS; Ahmad S; Ullah A; Shah K; Alrabaiah H; Arfan M
    Results Phys; 2021 Feb; 21():103772. PubMed ID: 33520629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems.
    Owolabi KM; Atangana A
    Chaos; 2019 Feb; 29(2):023111. PubMed ID: 30823722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.