BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35194718)

  • 41. Nanoconfinement of a Pharmaceutical Cocrystal with Praziquantel in Mesoporous Silica: The Influence of the Solid Form on Dissolution Enhancement.
    Salas-Zúñiga R; Mondragón-Vásquez K; Alcalá-Alcalá S; Lima E; Höpfl H; Herrera-Ruiz D; Morales-Rojas H
    Mol Pharm; 2022 Feb; 19(2):414-431. PubMed ID: 34967632
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variability in commercial carbamazepine samples--impact on drug release.
    Flicker F; Eberle VA; Betz G
    Int J Pharm; 2011 May; 410(1-2):99-106. PubMed ID: 21435386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physicochemical characterization of solid dispersions of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method.
    Sethia S; Squillante E
    J Pharm Sci; 2002 Sep; 91(9):1948-57. PubMed ID: 12210042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: myricetin cocrystals and a ternary phase diagram.
    Hong C; Xie Y; Yao Y; Li G; Yuan X; Shen H
    Pharm Res; 2015 Jan; 32(1):47-60. PubMed ID: 24939640
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel Aceclofenac Cocrystals with l-Cystine: Virtual Coformer Screening, Mechanochemical Synthesis, and Physicochemical Investigations.
    Kumar S; Gupta A; Prasad R; Singh S
    Curr Drug Deliv; 2021; 18(1):88-100. PubMed ID: 32807053
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surfactant-facilitated crystallization of dihydrate carbamazepine during dissolution of anhydrous polymorph.
    Rodríguez-Hornedo N; Murphy D
    J Pharm Sci; 2004 Feb; 93(2):449-60. PubMed ID: 14705201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved in vitro and in vivo performance of carbamazepine enabled by using a succinic acid cocrystal in a stable suspension formulation.
    Ullah M; Shah MR; Bin Asad MHH; Hasan SMF; Hussain I
    Pak J Pharm Sci; 2017 Nov; 30(6):2139-2145. PubMed ID: 29175782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds.
    Shiraki K; Takata N; Takano R; Hayashi Y; Terada K
    Pharm Res; 2008 Nov; 25(11):2581-92. PubMed ID: 18651208
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms by which moisture generates cocrystals.
    Jayasankar A; Good DJ; Rodríguez-Hornedo N
    Mol Pharm; 2007; 4(3):360-72. PubMed ID: 17488034
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Virtual Screening, Structural Analysis, and Formation Thermodynamics of Carbamazepine Cocrystals.
    Surov AO; Ramazanova AG; Voronin AP; Drozd KV; Churakov AV; Perlovich GL
    Pharmaceutics; 2023 Mar; 15(3):. PubMed ID: 36986697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorption onto Mesoporous Silica Using Supercritical Fluid Technology Improves Dissolution Rate of Carbamazepine-a Poorly Soluble Compound.
    Gandhi AV; Thipsay P; Kirthivasan B; Squillante E
    AAPS PharmSciTech; 2017 Nov; 18(8):3140-3150. PubMed ID: 28534299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel cocrystals of itraconazole: Insights from phase diagrams, formation thermodynamics and solubility.
    Vasilev NA; Surov AO; Voronin AP; Drozd KV; Perlovich GL
    Int J Pharm; 2021 Apr; 599():120441. PubMed ID: 33675927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of intrinsic dissolution behavior of different carbamazepine samples.
    Sehić S; Betz G; Hadzidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2010 Feb; 386(1-2):77-90. PubMed ID: 19900519
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Small-Scale Assays for Studying Dissolution of Pharmaceutical Cocrystals for Oral Administration.
    Box KJ; Comer J; Taylor R; Karki S; Ruiz R; Price R; Fotaki N
    AAPS PharmSciTech; 2016 Apr; 17(2):245-51. PubMed ID: 26208438
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stabilization mechanism of amorphous carbamazepine by transglycosylated rutin, a non-polymeric amorphous additive with a high glass transition temperature.
    Aoki C; Ma X; Higashi K; Ishizuka Y; Ueda K; Kadota K; Fukuzawa K; Tozuka Y; Kawakami K; Yonemochi E; Moribe K
    Int J Pharm; 2021 May; 600():120491. PubMed ID: 33744450
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel Salt-Cocrystals of Berberine Hydrochloride with Aliphatic Dicarboxylic Acids: Odd-Even Alternation in Physicochemical Properties.
    Wang L; Liu S; Chen JM; Wang YX; Sun CC
    Mol Pharm; 2021 Apr; 18(4):1758-1767. PubMed ID: 33656348
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions.
    Sakai T; Hirai D; Kimura SI; Iwao Y; Itai S
    Int J Pharm; 2018 Apr; 540(1-2):171-177. PubMed ID: 29447848
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cocrystals of acyclovir with promising physicochemical properties.
    Sarkar A; Rohani S
    J Pharm Sci; 2015 Jan; 104(1):98-105. PubMed ID: 25407552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmaceutical salts/cocrystals of enoxacin with dicarboxylic acids: Enhancing in vitro antibacterial activity of enoxacin by improving the solubility and permeability.
    Liu L; Zou D; Zhang Y; Zhang Q; Feng Y; Guo Y; Liu Y; Zhang X; Cheng G; Wang C; Zhang Y; Zhang L; Wu L; Chang L; Su X; Duan Y; Zhang Y; Liu M
    Eur J Pharm Biopharm; 2020 Sep; 154():62-73. PubMed ID: 32645384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cocrystals Mitigate Negative Effects of High pH on Solubility and Dissolution of a Basic Drug.
    Chen YM; Rodríguez-Hornedo N
    Cryst Growth Des; 2018 Mar; 18(3):1358-1366. PubMed ID: 30505243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.