These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3519486)

  • 1. Preparation and activity of nitrated insulin dimer.
    Cutfield SM; Dodson GG; Ronco N; Cutfield JF
    Int J Pept Protein Res; 1986 Apr; 27(4):335-43. PubMed ID: 3519486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential nitration with tetranitromethane of a specific tyrosine residue in penicillinase from Staphylococcus aureus PCl. Evidence that the preferentially nitrated residue is not part of the active site but that loss of activity is due to intermolecular cross-linking.
    Bristow AF; Virden R
    Biochem J; 1978 Feb; 169(2):381-8. PubMed ID: 629760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of human alpha 1-proteinase inhibitor by tetranitromethane. Structure-function relationship.
    Mierzwa S; Chan SK
    Biochem J; 1987 Aug; 246(1):37-42. PubMed ID: 3499901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification of phosphorylase b by tetranitromethane. Identification of a functional tyrosyl residue.
    Caruso C; Cacace MG; Di Prisco G
    Eur J Biochem; 1987 Aug; 166(3):547-52. PubMed ID: 3111849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implication of a tyrosyl residue at the active site of mitochondrial L-malate:NAD+ oxidoreductase.
    Otwell HB; Yung-Ho Tan A; Friedman ME
    Biochim Biophys Acta; 1978 Dec; 527(2):309-19. PubMed ID: 728442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine modification of glucose dehydrogenase from Bacillus megaterium. Effect of tetranitromethane on the enzyme in the tetrameric and monomeric state.
    Fröschle M; Ulmer W; Jany KD
    Eur J Biochem; 1984 Aug; 142(3):533-40. PubMed ID: 6432532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H n.m.r. studies of insulin. Assignment of resonances and properties of tyrosine residues.
    Bradbury JH; Ramesh V
    Biochem J; 1985 Aug; 229(3):731-7. PubMed ID: 3902004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the nitration site of insulin by peroxynitrite.
    Chi Q; Huang K
    J Pept Sci; 2007 Mar; 13(3):149-53. PubMed ID: 17121419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of enolase with tetranitromethane.
    Wolna E
    Acta Biochim Pol; 1980; 27(3-4):365-70. PubMed ID: 7269977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The modification with tetranitromethane of an essential tyrosine in the active site of pig fumarase.
    Beeckmans S; Kanarek L
    Biochim Biophys Acta; 1983 Mar; 743(3):370-8. PubMed ID: 6830817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of carboxypeptidase A crystals. Nitration of tyrosine-248.
    Muszynska G; Riordan JF
    Biochemistry; 1976 Jan; 15(1):46-51. PubMed ID: 942853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitration of the tyrosine residues of porcine pancreatic colipase with tetranitromethane, and properties of the nitrated derivatives.
    De Caro JD; Behnke WD; Bonicel JJ; Desnuelle PA; Rovery M
    Biochim Biophys Acta; 1983 Sep; 747(3):253-62. PubMed ID: 6615844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of nitrated proteins and tryptic peptides by HPLC-chip-MS/MS: site-specific quantification, nitration degree, and reactivity of tyrosine residues.
    Zhang Y; Yang H; Pöschl U
    Anal Bioanal Chem; 2011 Jan; 399(1):459-71. PubMed ID: 21058019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrophotometric pH titrations and nitration with tetranitromethane of the tyrosyl residues in yeast phosphoglycerate kinase.
    Hjelmgren T; Arvidsson L; Larsson-Raźnikiewicz M
    Biochim Biophys Acta; 1976 Sep; 445(2):342-9. PubMed ID: 8144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-ultraviolet tyrosyl circular dichroism of pig insulin monomers, dimers, and hexamers. Dipole-dipole coupling calculations in the monopole approximation.
    Strickland EH; Mercola D
    Biochemistry; 1976 Aug; 15(17):3875-84. PubMed ID: 986169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitration of tyrosyl residues in human alpha-lactalbumin. Effect on lactose synthase specifier activity.
    Prieels JP; Dolmans M; Leonis J; Brew K
    Eur J Biochem; 1975 Dec; 60(2):533-9. PubMed ID: 812700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of tyrosine residues in the function of bacteriorhodopsin. Specific nitration of tyrosine 26.
    Lemke HD; Oesterhelt D
    Eur J Biochem; 1981 Apr; 115(3):595-604. PubMed ID: 7016540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the pig insulin dimer in the cubic crystal.
    Badger J; Harris MR; Reynolds CD; Evans AC; Dodson EJ; Dodson GG; North AC
    Acta Crystallogr B; 1991 Feb; 47 ( Pt 1)():127-36. PubMed ID: 2025410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic residues involved in the interaction between protomers of the bovine growth hormone dimer. Methionine and tyrosine residues.
    Oppezzo OJ; Biscoglio de Jiménez Bonino M; Cascone O; Nowicki C; Blumgrund V; Santomé JA; Fernández HN
    Acta Physiol Pharmacol Latinoam; 1984; 34(2):175-84. PubMed ID: 6240916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The states of tyrosyl residues in thermolysin as examined by nitration and pH-dependent ionization.
    Lee SB; Inouye K; Tonomura B
    J Biochem; 1997 Feb; 121(2):231-7. PubMed ID: 9089395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.