These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35194990)

  • 1. Nonlinear Phenomena in Microfluidics.
    Battat S; Weitz DA; Whitesides GM
    Chem Rev; 2022 Apr; 122(7):6921-6937. PubMed ID: 35194990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear microfluidics: device physics, functions, and applications.
    Xia HM; Wu JW; Zheng JJ; Zhang J; Wang ZP
    Lab Chip; 2021 Apr; 21(7):1241-1268. PubMed ID: 33877234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial microfluidic physics.
    Amini H; Lee W; Di Carlo D
    Lab Chip; 2014 Aug; 14(15):2739-61. PubMed ID: 24914632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcations in flows of complex fluids around microfluidic cylinders.
    Haward SJ; Hopkins CC; Varchanis S; Shen AQ
    Lab Chip; 2021 Oct; 21(21):4041-4059. PubMed ID: 34647558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-microfluidics: biomaterials and biomimetic designs.
    Domachuk P; Tsioris K; Omenetto FG; Kaplan DL
    Adv Mater; 2010 Jan; 22(2):249-60. PubMed ID: 20217686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conceptual and Experimental Tools to Understand Spatial Effects and Transport Phenomena in Nonlinear Biochemical Networks Illustrated with Patchy Switching.
    Pompano RR; Chiang AH; Kastrup CJ; Ismagilov RF
    Annu Rev Biochem; 2017 Jun; 86():333-356. PubMed ID: 28654324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.
    Hu R; Li F; Lv J; He Y; Lu D; Yamada T; Ono N
    Biomed Microdevices; 2015; 17(3):9959. PubMed ID: 26004808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft hydraulics: from Newtonian to complex fluid flows through compliant conduits.
    Christov IC
    J Phys Condens Matter; 2021 Nov; 34(6):. PubMed ID: 34678790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splitting and separation of colloidal streams in sinusoidal microchannels.
    Schlenk M; Drechsler M; Karg M; Zimmermann W; Trebbin M; Förster S
    Lab Chip; 2018 Oct; 18(20):3163-3171. PubMed ID: 30187066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of microfluidic mixing using time pulsing.
    Glasgow I; Aubry N
    Lab Chip; 2003 May; 3(2):114-20. PubMed ID: 15100792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-induced mixing in microfluidic channels.
    Hellman AN; Rau KR; Yoon HH; Bae S; Palmer JF; Phillips KS; Allbritton NL; Venugopalan V
    Anal Chem; 2007 Jun; 79(12):4484-92. PubMed ID: 17508715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observing capture with a colloidal model membrane channel.
    Knowles SF; Fletcher M; Mc Hugh J; Earle M; Keyser UF; Thorneywork AL
    J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35679844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows.
    Jing W; Han HS
    Anal Chem; 2022 Mar; 94(9):3978-3986. PubMed ID: 35195992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method.
    Mautner T
    Biosens Bioelectron; 2004 Jun; 19(11):1409-19. PubMed ID: 15093212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial manipulation of bubbles in rectangular microfluidic channels.
    Hadikhani P; Hashemi SMH; Balestra G; Zhu L; Modestino MA; Gallaire F; Psaltis D
    Lab Chip; 2018 Mar; 18(7):1035-1046. PubMed ID: 29512658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid inertia controls mineral precipitation and clogging in pore to network-scale flows.
    Yang W; Chen MA; Lee SH; Kang PK
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2401318121. PubMed ID: 38968103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.