These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35195086)

  • 1. Liquid-Liver Phantom: Mimicking the Viscoelastic Dispersion of Human Liver for Ultrasound- and MRI-Based Elastography.
    Morr AS; Herthum H; Schrank F; Görner S; Anders MS; Lerchbaumer M; Müller HP; Fischer T; Jenderka KV; Hansen HHG; Janmey PA; Braun J; Sack I; Tzschätzsch H
    Invest Radiol; 2022 Aug; 57(8):502-509. PubMed ID: 35195086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear wave speed measurement bias in a viscoelastic phantom across six ultrasound elastography systems: a comparative study with transient elastography and magnetic resonance elastography.
    Kishimoto R; Suga M; Usumura M; Iijima H; Yoshida M; Hachiya H; Shiina T; Yamakawa M; Konno K; Obata T; Yamaguchi T
    J Med Ultrason (2001); 2022 Apr; 49(2):143-152. PubMed ID: 35061118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal stability of a multimodal visco-elastic polyacrylamide gel phantom for magnetic resonance and ultrasound shear-wave elastography.
    Usumura M; Kishimoto R; Ishii K; Hotta E; Kershaw J; Higashi T; Obata T; Suga M
    PLoS One; 2021; 16(5):e0250667. PubMed ID: 34019551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeatability and Agreement of Shear Wave Speed Measurements in Phantoms and Human Livers Across 6 Ultrasound 2-Dimensional Shear Wave Elastography Systems.
    Gilligan LA; Trout AT; Bennett P; Dillman JR
    Invest Radiol; 2020 Apr; 55(4):191-199. PubMed ID: 31977604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid wideband characterization of viscoelastic material properties by Bessel function-based time harmonic ultrasound elastography (B-THE).
    Meyer T; Anders M; Pietzcker AZ; Doyley M; Görner S; Böhm O; Engl P; Safraou Y; Braun J; Sack I; Tzschätzsch H
    J Mech Behav Biomed Mater; 2024 Dec; 160():106746. PubMed ID: 39303417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sources of Variability in Shear Wave Speed and Dispersion Quantification with Ultrasound Elastography: A Phantom Study.
    Korta Martiartu N; Nambiar S; Nascimento Kirchner I; Paverd C; Cester D; Frauenfelder T; Ruby L; Rominger MB
    Ultrasound Med Biol; 2021 Dec; 47(12):3529-3542. PubMed ID: 34548187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of commercial and non-commercial shear wave elastography implementations for vascular applications.
    Pruijssen JT; Schreuder FHBM; Wilbers J; Kaanders JHAM; de Korte CL; Hansen HHG
    Ultrasonics; 2024 May; 140():107312. PubMed ID: 38599075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography.
    Klatt D; Friedrich C; Korth Y; Vogt R; Braun J; Sack I
    Biorheology; 2010; 47(2):133-41. PubMed ID: 20683156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compact 0.5 T MR elastography device and its application for studying viscoelasticity changes in biological tissues during progressive formalin fixation.
    Braun J; Tzschätzsch H; Körting C; Ariza de Schellenberger A; Jenderka M; Drießle T; Ledwig M; Sack I
    Magn Reson Med; 2018 Jan; 79(1):470-478. PubMed ID: 28321914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography.
    Guo J; Posnansky O; Hirsch S; Scheel M; Taupitz M; Braun J; Sack I
    Phys Med Biol; 2012 Jun; 57(12):4041-53. PubMed ID: 22674199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study.
    Kishimoto R; Suga M; Koyama A; Omatsu T; Tachibana Y; Ebner DK; Obata T
    BMJ Open; 2017 Jan; 7(1):e013925. PubMed ID: 28057657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Criterion for Shear Wave Elastometric Assessment Using Modulus of Stiffness Difference between Object and Environment.
    Demin IY; Rykhtik PI; Spivak АE; Safonov DV
    Sovrem Tekhnologii Med; 2022; 14(5):5-13. PubMed ID: 37181832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound Shear Elastography With Expanded Bandwidth (USEWEB): A Novel Method for 2D Shear Phase Velocity Imaging of Soft Tissues.
    Kijanka P; Urban MW
    IEEE Trans Med Imaging; 2024 May; 43(5):1910-1922. PubMed ID: 38198276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Measurement Depth and Acquisition Parameters on Shear Wave Speed and Shear Wave Dispersion in Certified Phantoms Using a Canon Aplio Clinical Ultrasound Scanner.
    Obrist A; Ruby L; Martin A; Frauenfelder T; Rominger M; Paverd C
    Ultrasound Med Biol; 2023 Aug; 49(8):1742-1759. PubMed ID: 37156674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo time-harmonic multifrequency elastography of the human liver.
    Tzschätzsch H; Ipek-Ugay S; Guo J; Streitberger KJ; Gentz E; Fischer T; Klaua R; Schultz M; Braun J; Sack I
    Phys Med Biol; 2014 Apr; 59(7):1641-54. PubMed ID: 24614751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex vivo bovine liver nonlinear viscoelastic properties: MR elastography and rheological measurements.
    Jugé L; Foley P; Hatt A; Yeung J; Bilston LE
    J Mech Behav Biomed Mater; 2023 Feb; 138():105638. PubMed ID: 36623403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.