These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35195418)

  • 41. Toward Achieving Efficient and Accurate Ligand-Protein Unbinding with Deep Learning and Molecular Dynamics through RAVE.
    Lamim Ribeiro JM; Tiwary P
    J Chem Theory Comput; 2019 Jan; 15(1):708-719. PubMed ID: 30525598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complete reconstruction of dasatinib unbinding pathway from c-Src kinase by supervised molecular dynamics simulation method; assessing efficiency and trustworthiness of the method.
    Sohraby F; Javaheri Moghadam M; Aliyar M; Aryapour H
    J Biomol Struct Dyn; 2022; 40(23):12535-12545. PubMed ID: 34472425
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accelerating the Calculation of Protein-Ligand Binding Free Energy and Residence Times Using Dynamically Optimized Collective Variables.
    Brotzakis ZF; Limongelli V; Parrinello M
    J Chem Theory Comput; 2019 Jan; 15(1):743-750. PubMed ID: 30537822
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting Residence Time and Drug Unbinding Pathway through Scaled Molecular Dynamics.
    Schuetz DA; Bernetti M; Bertazzo M; Musil D; Eggenweiler HM; Recanatini M; Masetti M; Ecker GF; Cavalli A
    J Chem Inf Model; 2019 Jan; 59(1):535-549. PubMed ID: 30500211
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex.
    Shao Q; Zhu W
    J Phys Chem B; 2019 Sep; 123(38):7974-7983. PubMed ID: 31478672
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting ligand binding affinity using on- and off-rates for the SAMPL6 SAMPLing challenge.
    Dixon T; Lotz SD; Dickson A
    J Comput Aided Mol Des; 2018 Oct; 32(10):1001-1012. PubMed ID: 30141102
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis on selectivity difference between FKBP51 and FKBP52: Insight into the molecular mechanism of isoform selectivity.
    Shi D; Bai Q; Zhou S; Liu X; Liu H; Yao X
    Proteins; 2018 Jan; 86(1):43-56. PubMed ID: 29023988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations.
    Mollica L; Decherchi S; Zia SR; Gaspari R; Cavalli A; Rocchia W
    Sci Rep; 2015 Jun; 5():11539. PubMed ID: 26103621
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revealing the Unbinding Kinetics and Mechanism of Type I and Type II Protein Kinase Inhibitors by Local-Scaled Molecular Dynamics Simulations.
    Du Y; Wang R
    J Chem Theory Comput; 2020 Oct; 16(10):6620-6632. PubMed ID: 32841004
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of Ligand Binding Through Advanced Computational Approaches: A Review.
    Dickson A; Tiwary P; Vashisth H
    Curr Top Med Chem; 2017; 17(23):2626-2641. PubMed ID: 28413946
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advances in computational methods for ligand binding kinetics.
    Sohraby F; Nunes-Alves A
    Trends Biochem Sci; 2023 May; 48(5):437-449. PubMed ID: 36566088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unbinding free energy of acetylcholinesterase bound oxime drugs along the gorge pathway from metadynamics-umbrella sampling investigation.
    Pathak AK; Bandyopadhyay T
    Proteins; 2014 Sep; 82(9):1799-818. PubMed ID: 24549829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of human galectin-1 binding to saccharide ligands on dimer dissociation kinetics and structure.
    Romero JM; Trujillo M; Estrin DA; Rabinovich GA; Di Lella S
    Glycobiology; 2016 Dec; 26(12):1317-1327. PubMed ID: 27222530
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting Residence Time of GPCR Ligands with Machine Learning.
    Potterton A; Heifetz A; Townsend-Nicholson A
    Methods Mol Biol; 2022; 2390():191-205. PubMed ID: 34731470
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations.
    Hu G; Xu S; Wang J
    Chem Biol Drug Des; 2015 Dec; 86(6):1351-9. PubMed ID: 26032728
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of electrostatic interactions on ligand dissociation kinetics.
    Erbaş A; de la Cruz MO; Marko JF
    Phys Rev E; 2018 Feb; 97(2-1):022405. PubMed ID: 29548245
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Machine Learning and Enhanced Sampling Simulations for Computing the Potential of Mean Force and Standard Binding Free Energy.
    Bertazzo M; Gobbo D; Decherchi S; Cavalli A
    J Chem Theory Comput; 2021 Aug; 17(8):5287-5300. PubMed ID: 34260233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.
    Wang B; Li L; Hurley TD; Meroueh SO
    J Chem Inf Model; 2013 Oct; 53(10):2659-70. PubMed ID: 24032517
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unbinding Kinetics of Muscarinic M3 Receptor Antagonists Explained by Metadynamics Simulations.
    Galvani F; Pala D; Cuzzolin A; Scalvini L; Lodola A; Mor M; Rizzi A
    J Chem Inf Model; 2023 May; 63(9):2842-2856. PubMed ID: 37053454
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications.
    Reif MM; Zacharias M
    J Chem Theory Comput; 2022 Jun; 18(6):3873-3893. PubMed ID: 35653503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.