These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
566 related articles for article (PubMed ID: 35195431)
1. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study. Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431 [No Abstract] [Full Text] [Related]
2. Deep learning-based reconstruction can improve the image quality of low radiation dose head CT. Nagayama Y; Iwashita K; Maruyama N; Uetani H; Goto M; Sakabe D; Emoto T; Nakato K; Shigematsu S; Kato Y; Takada S; Kidoh M; Oda S; Nakaura T; Hatemura M; Ueda M; Mukasa A; Hirai T Eur Radiol; 2023 May; 33(5):3253-3265. PubMed ID: 36973431 [TBL] [Abstract][Full Text] [Related]
3. Radiation dose optimization potential of deep learning-based reconstruction for multiphase hepatic CT: A clinical and phantom study. Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Taguchi N; Maruyama N; Takada S; Uchimura R; Hayashi H; Kidoh M; Oda S; Nakaura T; Funama Y; Hatemura M; Hirai T Eur J Radiol; 2022 Jun; 151():110280. PubMed ID: 35381567 [TBL] [Abstract][Full Text] [Related]
4. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography. Nagayama Y; Emoto T; Kato Y; Kidoh M; Oda S; Sakabe D; Funama Y; Nakaura T; Hayashi H; Takada S; Uchimura R; Hatemura M; Tsujita K; Hirai T Eur Radiol; 2023 Dec; 33(12):8488-8500. PubMed ID: 37432405 [TBL] [Abstract][Full Text] [Related]
5. Low tube voltage and deep-learning reconstruction for reducing radiation and contrast medium doses in thin-slice abdominal CT: a prospective clinical trial. Yoshida K; Nagayama Y; Funama Y; Ishiuchi S; Motohara T; Masuda T; Nakaura T; Ishiko T; Hirai T; Beppu T Eur Radiol; 2024 May; ():. PubMed ID: 38753193 [TBL] [Abstract][Full Text] [Related]
6. Lung-Optimized Deep-Learning-Based Reconstruction for Ultralow-Dose CT. Goto M; Nagayama Y; Sakabe D; Emoto T; Kidoh M; Oda S; Nakaura T; Taguchi N; Funama Y; Takada S; Uchimura R; Hayashi H; Hatemura M; Kawanaka K; Hirai T Acad Radiol; 2023 Mar; 30(3):431-440. PubMed ID: 35738988 [TBL] [Abstract][Full Text] [Related]
7. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment. Bornet PA; Villani N; Gillet R; Germain E; Lombard C; Blum A; Gondim Teixeira PA Eur Radiol; 2022 May; 32(5):3161-3172. PubMed ID: 34989850 [TBL] [Abstract][Full Text] [Related]
8. Image quality comparison of lower extremity CTA between CT routine reconstruction algorithms and deep learning reconstruction. Zhang D; Mu C; Zhang X; Yan J; Xu M; Wang Y; Wang Y; Xue H; Chen Y; Jin Z BMC Med Imaging; 2023 Feb; 23(1):33. PubMed ID: 36800947 [TBL] [Abstract][Full Text] [Related]
9. Image quality and radiologists' subjective acceptance using model-based iterative and deep learning reconstructions as adjuncts to ultrahigh-resolution CT in low-dose contrast-enhanced abdominopelvic CT: phantom and clinical pilot studies. Nishikawa M; Machida H; Shimizu Y; Kariyasu T; Morisaka H; Adachi T; Nakai T; Sakaguchi K; Saito S; Matsumoto S; Koyanagi M; Yokoyama K Abdom Radiol (NY); 2022 Feb; 47(2):891-902. PubMed ID: 34914007 [TBL] [Abstract][Full Text] [Related]
10. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction. Brady SL; Trout AT; Somasundaram E; Anton CG; Li Y; Dillman JR Radiology; 2021 Jan; 298(1):180-188. PubMed ID: 33201790 [TBL] [Abstract][Full Text] [Related]
11. Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction. Yoon H; Kim J; Lim HJ; Lee MJ BMC Med Imaging; 2021 Oct; 21(1):146. PubMed ID: 34629049 [TBL] [Abstract][Full Text] [Related]
12. Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen. Thor D; Titternes R; Poludniowski G Med Phys; 2023 May; 50(5):2775-2786. PubMed ID: 36774193 [TBL] [Abstract][Full Text] [Related]
13. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study. Greffier J; Durand Q; Frandon J; Si-Mohamed S; Loisy M; de Oliveira F; Beregi JP; Dabli D Eur Radiol; 2023 Jan; 33(1):699-710. PubMed ID: 35864348 [TBL] [Abstract][Full Text] [Related]
14. Noise power spectrum properties of deep learning-based reconstruction and iterative reconstruction algorithms: Phantom and clinical study. Funama Y; Nakaura T; Hasegawa A; Sakabe D; Oda S; Kidoh M; Nagayama Y; Hirai T Eur J Radiol; 2023 Aug; 165():110914. PubMed ID: 37295358 [TBL] [Abstract][Full Text] [Related]
15. Deep-learning reconstruction with low-contrast media and low-kilovoltage peak for CT of the liver. Tachibana Y; Takaji R; Shiroo T; Asayama Y Clin Radiol; 2024 Apr; 79(4):e546-e553. PubMed ID: 38238148 [TBL] [Abstract][Full Text] [Related]
16. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study. Greffier J; Si-Mohamed S; Frandon J; Loisy M; de Oliveira F; Beregi JP; Dabli D Med Phys; 2022 Aug; 49(8):5052-5063. PubMed ID: 35696272 [TBL] [Abstract][Full Text] [Related]
17. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms. Oostveen LJ; Meijer FJA; de Lange F; Smit EJ; Pegge SA; Steens SCA; van Amerongen MJ; Prokop M; Sechopoulos I Eur Radiol; 2021 Aug; 31(8):5498-5506. PubMed ID: 33693996 [TBL] [Abstract][Full Text] [Related]
18. Abdominopelvic CT Image Quality: Evaluation of Thin (0.5-mm) Slices Using Deep Learning Reconstruction. Oostveen LJ; Smit EJ; Dekker HM; Buckens CF; Pegge SAH; de Lange F; Sechopoulos I; Prokop M AJR Am J Roentgenol; 2023 Mar; 220(3):381-388. PubMed ID: 36259592 [No Abstract] [Full Text] [Related]
19. The Feasibility of Deep Learning-Based Reconstruction for Low-Tube-Voltage CT Angiography for Transcatheter Aortic Valve Implantation. Kojima T; Yamasaki Y; Matsuura Y; Mikayama R; Shirasaka T; Kondo M; Kamitani T; Kato T; Ishigami K; Yabuuchi H J Comput Assist Tomogr; 2024 Jan-Feb 01; 48(1):77-84. PubMed ID: 37574664 [TBL] [Abstract][Full Text] [Related]
20. Combination of Deep Learning-Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation. Hata A; Yanagawa M; Yoshida Y; Miyata T; Tsubamoto M; Honda O; Tomiyama N AJR Am J Roentgenol; 2020 Dec; 215(6):1321-1328. PubMed ID: 33052702 [No Abstract] [Full Text] [Related] [Next] [New Search]