These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35195431)

  • 21. Combination of Deep Learning-Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation.
    Hata A; Yanagawa M; Yoshida Y; Miyata T; Tsubamoto M; Honda O; Tomiyama N
    AJR Am J Roentgenol; 2020 Dec; 215(6):1321-1328. PubMed ID: 33052702
    [No Abstract]   [Full Text] [Related]  

  • 22. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection.
    Tamura A; Mukaida E; Ota Y; Kamata M; Abe S; Yoshioka K
    Br J Radiol; 2021 Jul; 94(1123):20201357. PubMed ID: 34142867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.
    Shuman WP; Chan KT; Busey JM; Mitsumori LM; Choi E; Koprowicz KM; Kanal KM
    Radiology; 2014 Dec; 273(3):793-800. PubMed ID: 25170546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT.
    Nakamura Y; Narita K; Higaki T; Akagi M; Honda Y; Awai K
    Eur Radiol; 2021 Jul; 31(7):4700-4709. PubMed ID: 33389036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Image quality improvement with deep learning-based reconstruction on abdominal ultrahigh-resolution CT: A phantom study.
    Shirasaka T; Kojima T; Funama Y; Sakai Y; Kondo M; Mikayama R; Hamasaki H; Kato T; Ushijima Y; Asayama Y; Nishie A
    J Appl Clin Med Phys; 2021 Jul; 22(7):286-296. PubMed ID: 34159736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Value of deep learning reconstruction of chest low-dose CT for image quality improvement and lung parenchyma assessment on lung window.
    Wang J; Sui X; Zhao R; Du H; Wang J; Wang Y; Qin R; Lu X; Ma Z; Xu Y; Jin Z; Song L; Song W
    Eur Radiol; 2024 Feb; 34(2):1053-1064. PubMed ID: 37581663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Value of deep learning reconstruction at ultra-low-dose CT for evaluation of urolithiasis.
    Zhang G; Zhang X; Xu L; Bai X; Jin R; Xu M; Yan J; Jin Z; Sun H
    Eur Radiol; 2022 Sep; 32(9):5954-5963. PubMed ID: 35357541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of noise reduction on radiation dose reduction potential of virtual monochromatic spectral images: Comparison of phantom images with conventional 120 kVp images using deep learning image reconstruction and hybrid iterative reconstruction.
    Masuda S; Yamada Y; Minamishima K; Owaki Y; Yamazaki A; Jinzaki M
    Eur J Radiol; 2022 Apr; 149():110198. PubMed ID: 35168172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics.
    Higaki T; Nakamura Y; Zhou J; Yu Z; Nemoto T; Tatsugami F; Awai K
    Acad Radiol; 2020 Jan; 27(1):82-87. PubMed ID: 31818389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data.
    Greffier J; Frandon J; Si-Mohamed S; Dabli D; Hamard A; Belaouni A; Akessoul P; Besse F; Guiu B; Beregi JP
    Diagn Interv Imaging; 2022 Jan; 103(1):21-30. PubMed ID: 34493475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of a full model-based iterative reconstruction (MBIR) in 80 kVp ultra-low-dose paranasal sinus CT imaging of pediatric patients.
    Sun J; Zhang Q; Duan X; Zhang C; Wang P; Jia C; Liu Y; Peng Y
    Radiol Med; 2018 Feb; 123(2):117-124. PubMed ID: 29019028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy.
    Lyu P; Li Z; Chen Y; Wang H; Liu N; Liu J; Zhan P; Liu X; Shang B; Wang L; Gao J
    Eur Radiol; 2024 Jan; 34(1):28-38. PubMed ID: 37532899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT.
    Son W; Kim M; Hwang JY; Kim YW; Park C; Choo KS; Kim TU; Jang JY
    Korean J Radiol; 2022 Jul; 23(7):752-762. PubMed ID: 35695313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of Knowledge-Based Iterative Model Reconstruction in Abdominal Dynamic CT With Low Tube Voltage and Low Contrast Dose.
    Iyama Y; Nakaura T; Yokoyama K; Kidoh M; Harada K; Tokuyasu S; Yamashita Y
    AJR Am J Roentgenol; 2016 Apr; 206(4):687-93. PubMed ID: 26974470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT.
    Singh R; Digumarthy SR; Muse VV; Kambadakone AR; Blake MA; Tabari A; Hoi Y; Akino N; Angel E; Madan R; Kalra MK
    AJR Am J Roentgenol; 2020 Mar; 214(3):566-573. PubMed ID: 31967501
    [No Abstract]   [Full Text] [Related]  

  • 36. Improved stent sharpness evaluation with super-resolution deep learning reconstruction in coronary CT angiography.
    Ryu JK; Kim KH; Otgonbaatar C; Kim DS; Shim H; Seo JW
    Br J Radiol; 2024 Jun; 97(1159):1286-1294. PubMed ID: 38733576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-contrast lesion detection in neck CT: a multireader study comparing deep learning, iterative, and filtered back projection reconstructions using realistic phantoms.
    Bellmann Q; Peng Y; Genske U; Yan L; Wagner M; Jahnke P
    Eur Radiol Exp; 2024 Jul; 8(1):84. PubMed ID: 39046565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Deep learning reconstruction algorithm for coronary CT angiography in assessing obstructive coronary artery disease caused by calcified lesions: the clinical application value].
    Xu C; Yi Y; Li YY; Guo YB; Jin ZY; Wang YN
    Zhonghua Yi Xue Za Zhi; 2021 Oct; 101(39):3202-3207. PubMed ID: 34689531
    [No Abstract]   [Full Text] [Related]  

  • 39. Dose reduction in CT urography and vasculature phantom studies using model-based iterative reconstruction.
    Page L; Wei W; Kundra V; Rong XJ
    J Appl Clin Med Phys; 2016 Nov; 17(6):334-342. PubMed ID: 27929506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis.
    van Stiphout JA; Driessen J; Koetzier LR; Ruules LB; Willemink MJ; Heemskerk JWT; van der Molen AJ
    Eur Radiol; 2022 May; 32(5):2921-2929. PubMed ID: 34913104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.