These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 35195431)
41. Implementation of AI image reconstruction in CT-how is it validated and what dose reductions can be achieved. Brady SL Br J Radiol; 2023 Oct; 96(1150):20220915. PubMed ID: 37102695 [TBL] [Abstract][Full Text] [Related]
43. [Possible Radiation Dose Reduction in Abdominal Plain CT Using Deep Learning Reconstruction]. Onizuka Y; Sakai Y; Shirasaka T; Kondo M; Kato T Nihon Hoshasen Gijutsu Gakkai Zasshi; 2023 May; 79(5):446-452. PubMed ID: 36878551 [TBL] [Abstract][Full Text] [Related]
44. Deep-learning reconstruction for ultra-low-dose lung CT: Volumetric measurement accuracy and reproducibility of artificial ground-glass nodules in a phantom study. Mikayama R; Shirasaka T; Kojima T; Sakai Y; Yabuuchi H; Kondo M; Kato T Br J Radiol; 2022 Feb; 95(1130):20210915. PubMed ID: 34908478 [TBL] [Abstract][Full Text] [Related]
45. High-pitch, 120 kVp/30 mAs, low-dose dual-source chest CT with iterative reconstruction: Prospective evaluation of radiation dose reduction and image quality compared with those of standard-pitch low-dose chest CT in healthy adult volunteers. Lim HK; Ha HI; Hwang HJ; Lee K PLoS One; 2019; 14(1):e0211097. PubMed ID: 30677082 [TBL] [Abstract][Full Text] [Related]
46. Image quality assessment of artificial intelligence iterative reconstruction for low dose aortic CTA: A feasibility study of 70 kVp and reduced contrast medium volume. Li W; You Y; Zhong S; Shuai T; Liao K; Yu J; Zhao J; Li Z; Lu C Eur J Radiol; 2022 Apr; 149():110221. PubMed ID: 35196615 [TBL] [Abstract][Full Text] [Related]
48. Deep learning reconstruction for high-resolution computed tomography images of the temporal bone: comparison with hybrid iterative reconstruction. Fujita N; Yasaka K; Hatano S; Sakamoto N; Kurokawa R; Abe O Neuroradiology; 2024 Jul; 66(7):1105-1112. PubMed ID: 38514472 [TBL] [Abstract][Full Text] [Related]
49. Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning-based image reconstruction algorithm on CT: a phantom study. Choi H; Chang W; Kim JH; Ahn C; Lee H; Kim HY; Cho J; Lee YJ; Kim YH Eur Radiol; 2022 Feb; 32(2):1247-1255. PubMed ID: 34390372 [TBL] [Abstract][Full Text] [Related]
50. Deep Learning-Based Reconstruction Improves the Image Quality of Low-Dose CT Colonography. Chen Y; Huang Z; Feng L; Zou W; Kong D; Zhu D; Dai G; Zhao W; Zhang Y; Luo M Acad Radiol; 2024 Aug; 31(8):3191-3199. PubMed ID: 38290889 [TBL] [Abstract][Full Text] [Related]
51. Improving image quality with model-based iterative reconstruction algorithm for chest CT in children with reduced contrast concentration. Sun J; Hu D; Shen Y; Yang H; Chen C; Yin J; Peng Y Radiol Med; 2019 Jul; 124(7):595-601. PubMed ID: 30739289 [TBL] [Abstract][Full Text] [Related]
52. Effectiveness of deep learning reconstruction on standard to ultra-low-dose high-definition chest CT images. Hamabuchi N; Ohno Y; Kimata H; Ito Y; Fujii K; Akino N; Takenaka D; Yoshikawa T; Oshima Y; Matsuyama T; Nagata H; Ueda T; Ikeda H; Ozawa Y; Toyama H Jpn J Radiol; 2023 Dec; 41(12):1373-1388. PubMed ID: 37498483 [TBL] [Abstract][Full Text] [Related]
53. Can deep learning improve image quality of low-dose CT: a prospective study in interstitial lung disease. Zhao R; Sui X; Qin R; Du H; Song L; Tian D; Wang J; Lu X; Wang Y; Song W; Jin Z Eur Radiol; 2022 Dec; 32(12):8140-8151. PubMed ID: 35748899 [TBL] [Abstract][Full Text] [Related]
54. [Quantitative Analysis of Emphysema in Ultra-high-resolution CT by Using Deep Learning Reconstruction: Comparison with Hybrid Iterative Reconstruction]. Muramatsu S; Sato K Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(11):1163-1172. PubMed ID: 33229846 [TBL] [Abstract][Full Text] [Related]
55. Contribution of an artificial intelligence deep-learning reconstruction algorithm for dose optimization in lumbar spine CT examination: A phantom study. Greffier J; Frandon J; Durand Q; Kammoun T; Loisy M; Beregi JP; Dabli D Diagn Interv Imaging; 2023 Feb; 104(2):76-83. PubMed ID: 36100524 [TBL] [Abstract][Full Text] [Related]
56. Impact of a Deep Learning-based Super-resolution Image Reconstruction Technique on High-contrast Computed Tomography: A Phantom Study. Sato H; Fujimoto S; Tomizawa N; Inage H; Yokota T; Kudo H; Fan R; Kawamoto K; Honda Y; Kobayashi T; Minamino T; Kogure Y Acad Radiol; 2023 Nov; 30(11):2657-2665. PubMed ID: 36690564 [TBL] [Abstract][Full Text] [Related]
57. Coronary Stent Evaluation by CTA: Image Quality Comparison Between Super-Resolution Deep Learning Reconstruction and Other Reconstruction Algorithms. Nagayama Y; Emoto T; Hayashi H; Kidoh M; Oda S; Nakaura T; Sakabe D; Funama Y; Tabata N; Ishii M; Yamanaga K; Fujisue K; Takashio S; Yamamoto E; Tsujita K; Hirai T AJR Am J Roentgenol; 2023 Nov; 221(5):599-610. PubMed ID: 37377362 [No Abstract] [Full Text] [Related]
58. Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction. Otgonbaatar C; Ryu JK; Shin J; Woo JY; Seo JW; Shim H; Hwang DH Korean J Radiol; 2022 Nov; 23(11):1044-1054. PubMed ID: 36196766 [TBL] [Abstract][Full Text] [Related]
59. Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning-Based Reconstruction Algorithm. Nakamoto A; Onishi H; Tsuboyama T; Fukui H; Ota T; Ogawa K; Yano K; Kiso K; Honda T; Tatsumi M; Tomiyama N J Comput Assist Tomogr; 2023 Sep-Oct 01; 47(5):698-703. PubMed ID: 37707398 [TBL] [Abstract][Full Text] [Related]
60. Physical characteristics of deep learning-based image processing software in computed tomography: a phantom study. Sato S; Urikura A; Mimatsu M; Miyamae Y; Jibiki Y; Yamashita M; Ishihara T Phys Eng Sci Med; 2023 Dec; 46(4):1713-1721. PubMed ID: 37725313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]