These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 35196000)
21. Organogels from different self-assembling new dendritic peptides: morphology, rheology, and structural investigations. Palui G; Garai A; Nanda J; Nandi AK; Banerjee A J Phys Chem B; 2010 Jan; 114(3):1249-56. PubMed ID: 20041726 [TBL] [Abstract][Full Text] [Related]
22. Self-assembly of amphiphilic Janus dendrimers into mechanically robust supramolecular hydrogels for sustained drug release. Nummelin S; Liljeström V; Saarikoski E; Ropponen J; Nykänen A; Linko V; Seppälä J; Hirvonen J; Ikkala O; Bimbo LM; Kostiainen MA Chemistry; 2015 Oct; 21(41):14433-9. PubMed ID: 26134175 [TBL] [Abstract][Full Text] [Related]
23. Cation Tuning of Supramolecular Gel Properties: A New Paradigm for Sustained Drug Delivery. Ramin MA; Sindhu KR; Appavoo A; Oumzil K; Grinstaff MW; Chassande O; Barthélémy P Adv Mater; 2017 Apr; 29(13):. PubMed ID: 28151562 [TBL] [Abstract][Full Text] [Related]
24. Supramolecular organogels fabricated with dicarboxylic acids and primary alkyl amines: controllable self-assembled structures. Liao L; Zhong X; Jia X; Liao C; Zhong J; Ding S; Chen C; Hong S; Luo X RSC Adv; 2020 Aug; 10(49):29129-29138. PubMed ID: 35521101 [TBL] [Abstract][Full Text] [Related]
25. Injectable chitosan-based self-healing supramolecular hydrogels with temperature and pH dual-responsivenesses. Yang Y; Feng G; Wang J; Zhang R; Zhong S; Wang J; Cui X Int J Biol Macromol; 2023 Feb; 227():1038-1047. PubMed ID: 36460241 [TBL] [Abstract][Full Text] [Related]
26. Thermoreversible as well as thermoirreversible organogel formation by L-cysteine-based amphiphiles with poly(ethylene glycol) tail. Ghosh S; Das Mahapatra R; Dey J Langmuir; 2014 Feb; 30(6):1677-85. PubMed ID: 24460010 [TBL] [Abstract][Full Text] [Related]
27. Shear recovery and temperature stability of Ca Poirier A; Le Griel P; Bizien T; Zinn T; Pernot P; Baccile N Soft Matter; 2023 Jan; 19(3):366-377. PubMed ID: 36508178 [TBL] [Abstract][Full Text] [Related]
28. Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel. Adhikari B; Nanda J; Banerjee A Chemistry; 2011 Oct; 17(41):11488-96. PubMed ID: 21953927 [TBL] [Abstract][Full Text] [Related]
29. N-stearoyl amino acid derivatives: potent biomimetic hydro/organogelators as templates for preparation of gold nanoparticles. Delbecq F; Tsujimoto K; Ogue Y; Endo H; Kawai T J Colloid Interface Sci; 2013 Jan; 390(1):17-24. PubMed ID: 23089597 [TBL] [Abstract][Full Text] [Related]
30. Impact of Glycolipid Hydrophobic Chain Length and Headgroup Size on Self-Assembly and Hydrophobic Guest Release. Sekhar KPC; Adicherla H; Nayak RR Langmuir; 2018 Jul; 34(30):8875-8886. PubMed ID: 29983075 [TBL] [Abstract][Full Text] [Related]
32. l-Lysine-Based Gelators for the Formation of Oleogels in Four Vegetable Oils. Li Q; Zhang J; Zhang G; Xu B Molecules; 2022 Feb; 27(4):. PubMed ID: 35209157 [TBL] [Abstract][Full Text] [Related]
33. Hydrogel and Organogel Formation by Hierarchical Self-Assembly of Cyclic Peptides Nanotubes. Shaikh H; Rho JY; Macdougall LJ; Gurnani P; Lunn AM; Yang J; Huband S; Mansfield EDH; Peltier R; Perrier S Chemistry; 2018 Dec; 24(71):19066-19074. PubMed ID: 30338575 [TBL] [Abstract][Full Text] [Related]
34. Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo. Faidra Angelerou MG; Markus R; Paraskevopoulou V; Foralosso R; Clarke P; Alvarez CV; Chenlo M; Johnson L; Rutland C; Allen S; Brasnett C; Seddon A; Zelzer M; Marlow M J Control Release; 2020 Jan; 317():118-129. PubMed ID: 31678096 [TBL] [Abstract][Full Text] [Related]
35. Effect of molar ratio and concentration on the rheological properties of two-component supramolecular hydrogels: tuning of the morphological and drug releasing behaviour. Hansda B; Mondal B; Hazra S; Das KS; Castelletto V; Hamley IW; Banerjee A Soft Matter; 2023 Nov; 19(42):8264-8273. PubMed ID: 37869972 [TBL] [Abstract][Full Text] [Related]
36. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities. Samanta SK; Pal A; Bhattacharya S Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602 [TBL] [Abstract][Full Text] [Related]
37. Supramolecular assemblies of nucleoside phosphocholine amphiphiles. Moreau L; Barthélémy P; El Maataoui M; Grinstaff MW J Am Chem Soc; 2004 Jun; 126(24):7533-9. PubMed ID: 15198600 [TBL] [Abstract][Full Text] [Related]
38. Polymorphic transient glycolipid assemblies with tunable lifespan and cargo release. P C Sekhar K; Zhao K; Gao Z; Ma X; Geng H; Song A; Cui J J Colloid Interface Sci; 2022 Mar; 610():1067-1076. PubMed ID: 34876263 [TBL] [Abstract][Full Text] [Related]
39. Structure and properties of cholesterol-based hydrogelators with varying hydrophilic terminals: biocompatibility and development of antibacterial soft nanocomposites. Dutta S; Kar T; Mandal D; Das PK Langmuir; 2013 Jan; 29(1):316-27. PubMed ID: 23214716 [TBL] [Abstract][Full Text] [Related]
40. A systematic study of peripherally multiple aromatic ester-functionalized poly(benzyl ether) dendrons for the fabrication of organogels: structure-property relationships and thixotropic property. Feng Y; Liu ZX; Chen H; Yan ZC; He YM; Liu CY; Fan QH Chemistry; 2014 Jun; 20(23):7069-82. PubMed ID: 24753161 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]