BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 35196171)

  • 1. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.
    Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb.
    Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A
    Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.
    Mat Dzahir MA; Nobutomo T; Yamamoto SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6417-20. PubMed ID: 24111210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on a New Rehabilitation Robot for Balance Disorders.
    Wu J; Liu Y; Zhao J; Jia Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.
    Chiang MH; Lin HT
    Sensors (Basel); 2011; 11(12):11476-94. PubMed ID: 22247676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots.
    Guo B; Li Z; Huang M; Li X; Han J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dof Upper Limb Rehabilitation Robot Driven by Straight Fibers Pneumatic Muscles.
    Durante F; Raparelli T; Beomonte Zobel P
    Bioengineering (Basel); 2022 Aug; 9(8):. PubMed ID: 36004902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
    Zi B; Yin G; Zhang D
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-Robot Cooperative Strength Training Based on Robust Admittance Control Strategy.
    Lin M; Wang H; Yang C; Liu W; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multistage Hemiplegic Lower-Limb Rehabilitation Robot: Design and Gait Trajectory Planning.
    Wang X; Wang H; Zhang B; Zheng D; Yu H; Cheng B; Niu J
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
    Pérez-San Lázaro R; Salgado I; Chairez I
    ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spring damping based control for a novel lower limb rehabilitation robot with active flexible training planning.
    Hu J; Meng Q; Zhu Y; Zhang X; Wu W; Yu H
    Technol Health Care; 2023; 31(2):565-578. PubMed ID: 36120745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.