These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 3519625)

  • 1. Guanidine hydrochloride denaturation studies of mutant forms of staphylococcal nuclease.
    Shortle D
    J Cell Biochem; 1986; 30(4):281-9. PubMed ID: 3519625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation.
    Shortle D; Meeker AK
    Proteins; 1986 Sep; 1(1):81-9. PubMed ID: 3449854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease.
    Meeker AK; Garcia-Moreno B; Shortle D
    Biochemistry; 1996 May; 35(20):6443-9. PubMed ID: 8639591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accommodation of single amino acid insertions by the native state of staphylococcal nuclease.
    Sondek J; Shortle D
    Proteins; 1990; 7(4):299-305. PubMed ID: 2381904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcal nuclease and its 1-136 fragment.
    Eftink MR; Ionescu R; Ramsay GD; Wong CY; Wu JQ; Maki AH
    Biochemistry; 1996 Jun; 35(24):8084-94. PubMed ID: 8672513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and physical characterization of random insertions in Staphylococcal nuclease.
    Nguyen DM; Schleif RF
    J Mol Biol; 1998 Oct; 282(4):751-9. PubMed ID: 9743624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray and thermodynamic studies of staphylococcal nuclease variants I92E and I92K: insights into polarity of the protein interior.
    Nguyen DM; Leila Reynald R; Gittis AG; Lattman EE
    J Mol Biol; 2004 Aug; 341(2):565-74. PubMed ID: 15276844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of tryptophan analogues into staphylococcal nuclease: stability toward thermal and guanidine-HCl induced unfolding.
    Wong CY; Eftink MR
    Biochemistry; 1998 Jun; 37(25):8947-53. PubMed ID: 9636036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic folding and unfolding of staphylococcal nuclease and its six mutants studied by stopped-flow circular dichroism.
    Kalnin NN; Kuwajima K
    Proteins; 1995 Oct; 23(2):163-76. PubMed ID: 8592698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor.
    Liu Y; Breslauer K; Anderson S
    Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium and kinetic analyses of unfolding and refolding for the conserved proline mutants of tryptophan synthase alpha subunit.
    Ogasahara K; Yutani K
    Biochemistry; 1997 Jan; 36(4):932-40. PubMed ID: 9020793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability mutants of staphylococcal nuclease: large compensating enthalpy-entropy changes for the reversible denaturation reaction.
    Shortle D; Meeker AK; Freire E
    Biochemistry; 1988 Jun; 27(13):4761-8. PubMed ID: 3167015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lysine 73-->histidine variant of yeast iso-1-cytochrome c: evidence for a native-like intermediate in the unfolding pathway and implications for m value effects.
    Godbole S; Dong A; Garbin K; Bowler BE
    Biochemistry; 1997 Jan; 36(1):119-26. PubMed ID: 8993325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of the changes in denatured state structure underlying m value effects in staphylococcal nuclease.
    Wrabl J; Shortle D
    Nat Struct Biol; 1999 Sep; 6(9):876-83. PubMed ID: 10467101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability studies of amino acid substitutions at tyrosine 27 of the staphylococcal nuclease beta-barrel.
    Bhat MG; Ganley LM; Ledman DW; Goodman MA; Fox RO
    Biochemistry; 1997 Oct; 36(40):12167-74. PubMed ID: 9315853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-level expression of staphylococcal nuclease A in Escherichia coli.
    Jing G; Liu L; Liu Z; Zhou B; Zou Q
    Chin J Biotechnol; 1994; 10(1):25-32. PubMed ID: 7993969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.