These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35196320)

  • 1. Bayesian data assimilation for estimating instantaneous reproduction numbers during epidemics: Applications to COVID-19.
    Yang X; Wang S; Xing Y; Li L; Xu RYD; Friston KJ; Guo Y
    PLoS Comput Biol; 2022 Feb; 18(2):e1009807. PubMed ID: 35196320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative Bayesian modeling to nowcast the effective reproduction number from line list data with missing symptom onset dates.
    Lison A; Abbott S; Huisman J; Stadler T
    PLoS Comput Biol; 2024 Apr; 20(4):e1012021. PubMed ID: 38626217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Inference of State-Level COVID-19 Basic Reproduction Numbers across the United States.
    Mallela A; Neumann J; Miller EF; Chen Y; Posner RG; Lin YT; Hlavacek WS
    Viruses; 2022 Jan; 14(1):. PubMed ID: 35062361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian inference for the onset time and epidemiological characteristics of emerging infectious diseases.
    Shi B; Yang S; Tan Q; Zhou L; Liu Y; Zhou X; Liu J
    Front Public Health; 2024; 12():1406566. PubMed ID: 38827615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Approach to Nowcasting the Time-varying Reproduction Number.
    Sumalinab B; Gressani O; Hens N; Faes C
    Epidemiology; 2024 Jul; 35(4):512-516. PubMed ID: 38788149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
    Cazelles B; Champagne C; Nguyen-Van-Yen B; Comiskey C; Vergu E; Roche B
    PLoS Comput Biol; 2021 Jul; 17(7):e1009211. PubMed ID: 34310593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering and improved Uncertainty Quantification in the dynamic estimation of effective reproduction numbers.
    Capistrán MA; Capella A; Christen JA
    Epidemics; 2022 Sep; 40():100624. PubMed ID: 36075125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining wastewater surveillance and case data in estimating the time-varying effective reproduction number.
    Jin S; Tay M; Ng LC; Wong JCC; Cook AR
    Sci Total Environ; 2024 Jun; 928():172469. PubMed ID: 38621542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superspreading quantified from bursty epidemic trajectories.
    Kirkegaard JB; Sneppen K
    Sci Rep; 2021 Dec; 11(1):24124. PubMed ID: 34916534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of heterogeneous instantaneous reproduction numbers with application to characterize SARS-CoV-2 transmission in Massachusetts counties.
    Zhou Z; Kolaczyk ED; Thompson RN; White LF
    PLoS Comput Biol; 2022 Sep; 18(9):e1010434. PubMed ID: 36048890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission dynamics of the COVID-19 epidemic in England.
    Liu Y; Tang JW; Lam TTY
    Int J Infect Dis; 2021 Mar; 104():132-138. PubMed ID: 33359440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number.
    Gressani O; Wallinga J; Althaus CL; Hens N; Faes C
    PLoS Comput Biol; 2022 Oct; 18(10):e1010618. PubMed ID: 36215319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating SARS-CoV-2 infections from deaths, confirmed cases, tests, and random surveys.
    Irons NJ; Raftery AE
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34312227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model.
    Zhou T; Ji Y
    Contemp Clin Trials; 2020 Oct; 97():106146. PubMed ID: 32947047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven inference of the reproduction number for COVID-19 before and after interventions for 51 European countries.
    Karnakov P; Arampatzis G; Kičić I; Wermelinger F; Wälchli D; Papadimitriou C; Koumoutsakos P
    Swiss Med Wkly; 2020 Jul; 150():w20313. PubMed ID: 32677705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves.
    Parag KV
    PLoS Comput Biol; 2021 Sep; 17(9):e1009347. PubMed ID: 34492011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative Strategies for the Estimation of a Disease's Basic Reproduction Number: A Model-Agnostic Study.
    Páez GN; Cerón JF; Cortés S; Quiroz AJ; Zea JF; Franco C; Cruz É; Vargas G; Castañeda C
    Bull Math Biol; 2021 Jul; 83(8):89. PubMed ID: 34216281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refining Reproduction Number Estimates to Account for Unobserved Generations of Infection in Emerging Epidemics.
    Brizzi A; O'Driscoll M; Dorigatti I
    Clin Infect Dis; 2022 Aug; 75(1):e114-e121. PubMed ID: 35176766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nine-month Trend of Time-Varying Reproduction Numbers of COVID-19 in West of Iran.
    Rahimi E; Hashemi Nazari SS; Mokhayeri Y; Sharhani A; Mohammadi R
    J Res Health Sci; 2021 Jun; 21(2):e00517. PubMed ID: 34465640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported epidemic data.
    Gressani O; Faes C; Hens N
    Biom J; 2023 Aug; 65(6):e2200024. PubMed ID: 36639234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.