BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 35196402)

  • 1. Single-cell transcriptomics in human skin research: available technologies, technical considerations and disease applications.
    Theocharidis G; Tekkela S; Veves A; McGrath JA; Onoufriadis A
    Exp Dermatol; 2022 May; 31(5):655-673. PubMed ID: 35196402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell RNA sequencing in Drosophila: Technologies and applications.
    Li H
    Wiley Interdiscip Rev Dev Biol; 2021 Sep; 10(5):e396. PubMed ID: 32940008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rise of single-cell transcriptomics in yeast.
    Nadal-Ribelles M; Solé C; de Nadal E; Posas F
    Yeast; 2024 Apr; 41(4):158-170. PubMed ID: 38403881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing single cell stereo-sequencing technology to transform the plant transcriptome landscape.
    Bawa G; Liu Z; Yu X; Tran LP; Sun X
    Trends Plant Sci; 2024 Feb; 29(2):249-265. PubMed ID: 37914553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of Single-Cell RNA-Sequencing and Spatial Transcriptomics in Understanding the Pathogenesis and Treatment of Skin Diseases.
    Houser AE; Kazmi A; Nair AK; Ji AL
    JID Innov; 2023 Jul; 3(4):100198. PubMed ID: 37205302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding human gut diseases at single-cell resolution.
    Bigaeva E; Uniken Venema WTC; Weersma RK; Festen EAM
    Hum Mol Genet; 2020 Sep; 29(R1):R51-R58. PubMed ID: 32588873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding Method of Single-cell Spatial Transcriptomics Sequencing.
    Zhou Y; Jia E; Pan M; Zhao X; Ge Q
    Int J Biol Sci; 2020; 16(14):2663-2674. PubMed ID: 32792863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Advancement and Application of the Single-Cell Transcriptome in Biological and Medical Research.
    Huang K; Xu Y; Feng T; Lan H; Ling F; Xiang H; Liu Q
    Biology (Basel); 2024 Jun; 13(6):. PubMed ID: 38927331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell transcriptomics: background, technologies, applications, and challenges.
    Duhan L; Kumari D; Naime M; Parmar VS; Chhillar AK; Dangi M; Pasrija R
    Mol Biol Rep; 2024 Apr; 51(1):600. PubMed ID: 38689046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Transcriptomics: A Powerful Tool in Disease Understanding and Drug Discovery.
    Cao J; Li C; Cui Z; Deng S; Lei T; Liu W; Yang H; Chen P
    Theranostics; 2024; 14(7):2946-2968. PubMed ID: 38773973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene panel selection for targeted spatial transcriptomics.
    Zhang Y; Petukhov V; Biederstedt E; Que R; Zhang K; Kharchenko PV
    Genome Biol; 2024 Jan; 25(1):35. PubMed ID: 38273415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skin in the game: a review of single-cell and spatial transcriptomics in dermatological research.
    Schepps S; Xu J; Yang H; Mandel J; Mehta J; Tolotta J; Baker N; Tekmen V; Nikbakht N; Fortina P; Fuentes I; LaFleur B; Cho RJ; South AP
    Clin Chem Lab Med; 2024 Apr; ():. PubMed ID: 38656304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell type discovery using single-cell transcriptomics: implications for ontological representation.
    Aevermann BD; Novotny M; Bakken T; Miller JA; Diehl AD; Osumi-Sutherland D; Lasken RS; Lein ES; Scheuermann RH
    Hum Mol Genet; 2018 May; 27(R1):R40-R47. PubMed ID: 29590361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural cell diversity in the light of single-cell transcriptomics.
    Fernández-Moya SM; Ganesh AJ; Plass M
    Transcription; 2023; 14(3-5):158-176. PubMed ID: 38229529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SINGLE-CELL TRANSCRIPTOME ANALYSIS IN HEALTH AND DISEASE.
    Bhattachan P; Jeschke MG
    Shock; 2024 Jan; 61(1):19-27. PubMed ID: 37962963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking eco-evo studies of gene expression for non-model organisms in the genomic era.
    Freedman AH; Sackton TB
    Mol Ecol; 2024 May; ():e17378. PubMed ID: 38721834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heterogeneity of erythroid cells: insight at the single-cell transcriptome level.
    Wang J; Liang Y; Xu C; Gao J; Tong J; Shi L
    Cell Tissue Res; 2024 Jul; ():. PubMed ID: 38953986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Human Cell Atlas: Technical approaches and challenges.
    Hon CC; Shin JW; Carninci P; Stubbington MJT
    Brief Funct Genomics; 2018 Jul; 17(4):283-294. PubMed ID: 29092000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and Opportunities for the Translation of Single-Cell RNA Sequencing Technologies to Dermatology.
    Ascensión AM; Araúzo-Bravo MJ; Izeta A
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Roadmap for a Consensus Human Skin Cell Atlas and Single-Cell Data Standardization.
    Almet AA; Yuan H; Annusver K; Ramos R; Liu Y; Wiedemann J; Sorkin DH; Landén NX; Sonkoly E; Haniffa M; Nie Q; Lichtenberger BM; Luecken MD; Andersen B; Tsoi LC; Watt FM; Gudjonsson JE; Plikus MV; Kasper M
    J Invest Dermatol; 2023 Sep; 143(9):1667-1677. PubMed ID: 37612031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.