These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35196532)
1. Tartaric acid soil-amendment increases phytoextraction potential through root to shoot transfer of lead in turnip. Khan I; Iqbal M; Raza SH; Anwar S; Ashraf M; Shafiq F Chemosphere; 2022 Jun; 296():134055. PubMed ID: 35196532 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the efficacy of chelate-assisted phytoextraction of lead by coffeeweed (Sesbania exaltata Raf.). Miller G; Begonia G; Begonia M; Ntoni J; Hundley O Int J Environ Res Public Health; 2008 Dec; 5(5):428-35. PubMed ID: 19151439 [TBL] [Abstract][Full Text] [Related]
3. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Kanwal U; Ali S; Shakoor MB; Farid M; Hussain S; Yasmeen T; Adrees M; Bharwana SA; Abbas F Environ Sci Pollut Res Int; 2014; 21(16):9899-910. PubMed ID: 24854501 [TBL] [Abstract][Full Text] [Related]
4. Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil. Begonia MT; Begonia GB; Ighoavodha M; Gilliard D Int J Environ Res Public Health; 2005 Aug; 2(2):228-33. PubMed ID: 16705822 [TBL] [Abstract][Full Text] [Related]
5. Organic chelants-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinacea oleracea L.). Khan I; Iqbal M; Ashraf MY; Ashraf MA; Ali S J Hazard Mater; 2016 Nov; 317():352-361. PubMed ID: 27318732 [TBL] [Abstract][Full Text] [Related]
6. Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals (Cd and Pb). Gul I; Manzoor M; Hashmi I; Bhatti MF; Kallerhoff J; Arshad M J Environ Manage; 2019 Nov; 249():109408. PubMed ID: 31513965 [TBL] [Abstract][Full Text] [Related]
7. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. Zhao S; Shang X; Duo L Environ Sci Pollut Res Int; 2013 Feb; 20(2):967-75. PubMed ID: 22661279 [TBL] [Abstract][Full Text] [Related]
8. Bioavailability and uptake of lead by coffeeweed (Sesbania exaltata Raf.). Miller G; Begonia G; Begonia M; Ntoni J Int J Environ Res Public Health; 2008 Dec; 5(5):436-40. PubMed ID: 19151440 [TBL] [Abstract][Full Text] [Related]
9. Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages. Shakoor MB; Ali S; Hameed A; Farid M; Hussain S; Yasmeen T; Najeeb U; Bharwana SA; Abbasi GH Ecotoxicol Environ Saf; 2014 Nov; 109():38-47. PubMed ID: 25164201 [TBL] [Abstract][Full Text] [Related]
10. Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Saffari VR; Saffari M Int J Phytoremediation; 2020; 22(11):1204-1214. PubMed ID: 32329354 [TBL] [Abstract][Full Text] [Related]
11. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230 [TBL] [Abstract][Full Text] [Related]
12. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Muhammad D; Chen F; Zhao J; Zhang G; Wu F Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355 [TBL] [Abstract][Full Text] [Related]
13. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Habiba U; Ali S; Farid M; Shakoor MB; Rizwan M; Ibrahim M; Abbasi GH; Hayat T; Ali B Environ Sci Pollut Res Int; 2015 Jan; 22(2):1534-44. PubMed ID: 25163559 [TBL] [Abstract][Full Text] [Related]
14. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445 [TBL] [Abstract][Full Text] [Related]
15. Enhanced lead phytoextraction and soil health restoration through exogenous supply of organic ligands: Geochemical modeling". Manzoor M; Shafiq M; Gul I; Kamboh UR; Guan DX; Ali Alazba A; Tomforde S; Arshad M J Environ Manage; 2023 Dec; 348():119435. PubMed ID: 37890401 [TBL] [Abstract][Full Text] [Related]
16. EDTA-enhanced phytoremediation of lead-contaminated soil by the halophyte Sesuvium portulacastrum. Zaier H; Ghnaya T; Ghabriche R; Chmingui W; Lakhdar A; Lutts S; Abdelly C Environ Sci Pollut Res Int; 2014 Jun; 21(12):7607-15. PubMed ID: 24604274 [TBL] [Abstract][Full Text] [Related]
17. Lead phytoextraction from contaminated soil with high-biomass plant species. Shen ZG; Li XD; Wang CC; Chen HM; Chua H J Environ Qual; 2002; 31(6):1893-900. PubMed ID: 12469839 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related]
19. Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize ( Menhas S; Hayat K; Niazi NK; Zhou P; Amna ; Bundschuh J; Naeem M; Munis MFH; Yang X; Chaudhary HJ Int J Phytoremediation; 2021; 23(6):585-596. PubMed ID: 33166474 [TBL] [Abstract][Full Text] [Related]
20. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Afshan S; Ali S; Bharwana SA; Rizwan M; Farid M; Abbas F; Ibrahim M; Mehmood MA; Abbasi GH Environ Sci Pollut Res Int; 2015 Aug; 22(15):11679-89. PubMed ID: 25850739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]