These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 35196562)

  • 1. A review on bioremediation approach for heavy metal detoxification and accumulation in plants.
    Yaashikaa PR; Kumar PS; Jeevanantham S; Saravanan R
    Environ Pollut; 2022 May; 301():119035. PubMed ID: 35196562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic.
    Wu B; Luo S; Luo H; Huang H; Xu F; Feng S; Xu H
    Sci Total Environ; 2022 Feb; 808():151995. PubMed ID: 34856269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation.
    Ghuge SA; Nikalje GC; Kadam US; Suprasanna P; Hong JC
    J Hazard Mater; 2023 May; 450():131039. PubMed ID: 36867909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing phytoremediation of soils polluted with heavy metals.
    Gavrilescu M
    Curr Opin Biotechnol; 2022 Apr; 74():21-31. PubMed ID: 34781102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role and Mechanism of Low Molecular-Weight-Organic Acids in Enhanced Phytoremediation of Heavy Metal Contaminated Soil].
    Fang ZG; Xie JT; Yang Q; Lu YZ; Huang H; Zhu YX; Yin SM; Wu XT; Du ST
    Huan Jing Ke Xue; 2022 Oct; 43(10):4669-4678. PubMed ID: 36224152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites.
    Nurzhanova A; Pidlisnyuk V; Abit K; Nurzhanov C; Kenessov B; Stefanovska T; Erickson L
    Environ Sci Pollut Res Int; 2019 May; 26(13):13320-13333. PubMed ID: 30903469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling phytoremediation of heavy metal contaminated soils through machine learning.
    Shi L; Li J; Palansooriya KN; Chen Y; Hou D; Meers E; Tsang DCW; Wang X; Ok YS
    J Hazard Mater; 2023 Jan; 441():129904. PubMed ID: 36096061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils.
    Bian F; Zhong Z; Zhang X; Yang C; Gai X
    Chemosphere; 2020 May; 246():125750. PubMed ID: 31891850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies.
    Rai GK; Bhat BA; Mushtaq M; Tariq L; Rai PK; Basu U; Dar AA; Islam ST; Dar TUH; Bhat JA
    Physiol Plant; 2021 Sep; 173(1):287-304. PubMed ID: 33864701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals.
    Skuza L; Szućko-Kociuba I; Filip E; Bożek I
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assess long-term As, Pb and Cr contamination and uptake by Eriocaulon decangulare in the Apalachicola National Forest.
    Wu Y; Qi L; Wang B; Medley P; Drake J; Vernon J; Ibeanusi V; Chen G
    Sci Total Environ; 2022 Sep; 838(Pt 1):156040. PubMed ID: 35597343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation.
    Yang Z; Yang F; Liu JL; Wu HT; Yang H; Shi Y; Liu J; Zhang YF; Luo YR; Chen KM
    Sci Total Environ; 2022 Feb; 809():151099. PubMed ID: 34688763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium Uptake From Soil by Ornamental Metallophytes: A Meta-analytical Approach.
    Deepika ; Haritash AK
    Environ Manage; 2023 May; 71(5):1087-1097. PubMed ID: 36573998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach.
    Shikha D; Singh PK
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4104-4124. PubMed ID: 33210252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of intercropping on safe agricultural production and phytoremediation of heavy metal-contaminated soils.
    Liu Y; Huang L; Wen Z; Fu Y; Liu Q; Xu S; Li Z; Liu C; Yu C; Feng Y
    Sci Total Environ; 2023 Jun; 875():162700. PubMed ID: 36906036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals.
    Zhang X; Li M; Yang H; Li X; Cui Z
    J Environ Manage; 2018 Oct; 223():132-139. PubMed ID: 29909097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants.
    Sytar O; Ghosh S; Malinska H; Zivcak M; Brestic M
    Physiol Plant; 2021 Sep; 173(1):148-166. PubMed ID: 33219524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.