These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 35197069)
1. Combination treatment of docetaxel with caffeic acid phenethyl ester suppresses the survival and the proliferation of docetaxel-resistant prostate cancer cells via induction of apoptosis and metabolism interference. Fu YK; Wang BJ; Tseng JC; Huang SH; Lin CY; Kuo YY; Hour TC; Chuu CP J Biomed Sci; 2022 Feb; 29(1):16. PubMed ID: 35197069 [TBL] [Abstract][Full Text] [Related]
2. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1. Lin HP; Lin CY; Huo C; Hsiao PH; Su LC; Jiang SS; Chan TM; Chang CH; Chen LT; Kung HJ; Wang HD; Chuu CP Oncotarget; 2015 Mar; 6(9):6684-707. PubMed ID: 25788262 [TBL] [Abstract][Full Text] [Related]
3. CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling. Tseng JC; Lin CY; Su LC; Fu HH; Yang SD; Chuu CP Oncotarget; 2016 Jun; 7(25):38010-38024. PubMed ID: 27191743 [TBL] [Abstract][Full Text] [Related]
4. Rooibos suppresses proliferation of castration-resistant prostate cancer cells via inhibition of Akt signaling. Huang SH; Tseng JC; Lin CY; Kuo YY; Wang BJ; Kao YH; Muller CJF; Joubert E; Chuu CP Phytomedicine; 2019 Nov; 64():153068. PubMed ID: 31419729 [TBL] [Abstract][Full Text] [Related]
6. Caffeic acid phenethyl ester suppresses EGFR/FAK/Akt signaling, migration, and tumor growth of prostate cancer cells. Tseng JC; Wang BJ; Wang YP; Kuo YY; Chen JK; Hour TC; Kuo LK; Hsiao PJ; Yeh CC; Kao CL; Shih LJ; Chuu CP Phytomedicine; 2023 Jul; 116():154860. PubMed ID: 37201366 [TBL] [Abstract][Full Text] [Related]
7. CD44 Promotes Migration and Invasion of Docetaxel-Resistant Prostate Cancer Cells Likely via Induction of Hippo-Yap Signaling. Lai CJ; Lin CY; Liao WY; Hour TC; Wang HD; Chuu CP Cells; 2019 Mar; 8(4):. PubMed ID: 30935014 [TBL] [Abstract][Full Text] [Related]
8. Caffeic acid phenethyl ester suppresses the expression of androgen receptor variant 7 via inhibition of CDK1 and AKT. Kuo YY; Huo C; Li CY; Chuu CP Cancer Gene Ther; 2024 Jun; 31(6):807-815. PubMed ID: 38480977 [TBL] [Abstract][Full Text] [Related]
9. Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks. Chuu CP; Lin HP; Ciaccio MF; Kokontis JM; Hause RJ; Hiipakka RA; Liao S; Jones RB Cancer Prev Res (Phila); 2012 May; 5(5):788-97. PubMed ID: 22562408 [TBL] [Abstract][Full Text] [Related]
10. Caffeic acid phenethyl ester suppresses androgen receptor signaling and stability via inhibition of phosphorylation on Ser81 and Ser213. Kuo YY; Huo C; Lin CY; Lin HP; Liu JS; Wang WC; Chang CR; Chuu CP Cell Commun Signal; 2019 Aug; 17(1):100. PubMed ID: 31429764 [TBL] [Abstract][Full Text] [Related]
11. Aspalathus linearis suppresses cell survival and proliferation of enzalutamide-resistant prostate cancer cells via inhibition of c-Myc and stability of androgen receptor. Wang BJ; Huang SH; Kao CL; Muller CJF; Wang YP; Chang KH; Wen HC; Yeh CC; Shih LJ; Kao YH; Huang SP; Li CY; Chuu CP PLoS One; 2022; 17(7):e0270803. PubMed ID: 35776912 [TBL] [Abstract][Full Text] [Related]
12. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Xiang D; Wang D; He Y; Xie J; Zhong Z; Li Z; Xie J Anticancer Drugs; 2006 Aug; 17(7):753-62. PubMed ID: 16926625 [TBL] [Abstract][Full Text] [Related]
13. Anti-colon cancer effect of caffeic acid p-nitro-phenethyl ester in vitro and in vivo and detection of its metabolites. Tang H; Yao X; Yao C; Zhao X; Zuo H; Li Z Sci Rep; 2017 Aug; 7(1):7599. PubMed ID: 28790461 [TBL] [Abstract][Full Text] [Related]
14. Targeting POH1 inhibits prostate cancer cell growth and enhances the suppressive efficacy of androgen deprivation and docetaxel. Yu W; Li J; Wang Q; Wang B; Zhang L; Liu Y; Tang M; Xu G; Yang Z; Wang X; Zhang J; Liu Y; Shi G Prostate; 2019 Aug; 79(11):1304-1315. PubMed ID: 31212367 [TBL] [Abstract][Full Text] [Related]
15. Caffeic acid phenethyl ester induces radiosensitization via inhibition of DNA damage repair in androgen-independent prostate cancer cells. Anjaly K; Tiku AB Environ Toxicol; 2022 May; 37(5):995-1006. PubMed ID: 35006630 [TBL] [Abstract][Full Text] [Related]
16. GLIPR1-ΔTM synergizes with docetaxel in cell death and suppresses resistance to docetaxel in prostate cancer cells. Karanika S; Karantanos T; Kurosaka S; Wang J; Hirayama T; Yang G; Park S; Golstov AA; Tanimoto R; Li L; Thompson TC Mol Cancer; 2015 Jun; 14():122. PubMed ID: 26084402 [TBL] [Abstract][Full Text] [Related]
17. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. Chang H; Wang Y; Yin X; Liu X; Xuan H BMC Complement Altern Med; 2017 Sep; 17(1):471. PubMed ID: 28950845 [TBL] [Abstract][Full Text] [Related]
18. Long noncoding RNA MALAT1 enhances the docetaxel resistance of prostate cancer cells via miR-145-5p-mediated regulation of AKAP12. Xue D; Lu H; Xu HY; Zhou CX; He XZ J Cell Mol Med; 2018 Jun; 22(6):3223-3237. PubMed ID: 29633510 [TBL] [Abstract][Full Text] [Related]
19. Cell suspension culture extract of Eriobotrya japonica attenuates growth and induces apoptosis in prostate cancer cells via targeting SREBP-1/FASN-driven metabolism and AR. Hsieh PF; Jiang WP; Basavaraj P; Huang SY; Ruangsai P; Wu JB; Huang GJ; Huang WC Phytomedicine; 2021 Dec; 93():153806. PubMed ID: 34740154 [TBL] [Abstract][Full Text] [Related]
20. Combination treatment with docetaxel and histone deacetylase inhibitors downregulates androgen receptor signaling in castration-resistant prostate cancer. Park SE; Kim HG; Kim DE; Jung YJ; Kim Y; Jeong SY; Choi EK; Hwang JJ; Kim CS Invest New Drugs; 2018 Apr; 36(2):195-205. PubMed ID: 29110173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]