BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35197425)

  • 1. Gut-derived serotonin and its emerging roles in immune function, inflammation, metabolism and the gut-brain axis.
    Banskota S; Khan WI
    Curr Opin Endocrinol Diabetes Obes; 2022 Apr; 29(2):177-182. PubMed ID: 35197425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ever-changing roles of serotonin.
    Jones LA; Sun EW; Martin AM; Keating DJ
    Int J Biochem Cell Biol; 2020 Aug; 125():105776. PubMed ID: 32479926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation.
    Shajib MS; Baranov A; Khan WI
    ACS Chem Neurosci; 2017 May; 8(5):920-931. PubMed ID: 28288510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut-Brain Axis.
    Engevik MA; Luck B; Visuthranukul C; Ihekweazu FD; Engevik AC; Shi Z; Danhof HA; Chang-Graham AL; Hall A; Endres BT; Haidacher SJ; Horvath TD; Haag AM; Devaraj S; Garey KW; Britton RA; Hyser JM; Shroyer NF; Versalovic J
    Cell Mol Gastroenterol Hepatol; 2021; 11(1):221-248. PubMed ID: 32795610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine.
    Liu N; Sun S; Wang P; Sun Y; Hu Q; Wang X
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of serotonin and its receptors in activation of immune responses and inflammation.
    Shajib MS; Khan WI
    Acta Physiol (Oxf); 2015 Mar; 213(3):561-74. PubMed ID: 25439045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut hormones: emerging role in immune activation and inflammation.
    Khan WI; Ghia JE
    Clin Exp Immunol; 2010 Jul; 161(1):19-27. PubMed ID: 20408856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enterochromaffin cell and 5-hydroxytryptamine responses to the same infectious agent differ in Th1 and Th2 dominant environments.
    Motomura Y; Ghia JE; Wang H; Akiho H; El-Sharkawy RT; Collins M; Wan Y; McLaughlin JT; Khan WI
    Gut; 2008 Apr; 57(4):475-81. PubMed ID: 18198200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The gut-brain axis: spatial relationship between spinal afferent nerves and 5-HT-containing enterochromaffin cells in mucosa of mouse colon.
    Dodds KN; Travis L; Kyloh MA; Jones LA; Keating DJ; Spencer NJ
    Am J Physiol Gastrointest Liver Physiol; 2022 May; 322(5):G523-G533. PubMed ID: 35293258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-HT system in the gut: roles in the regulation of visceral sensitivity and motor functions.
    Grundy D
    Eur Rev Med Pharmacol Sci; 2008 Aug; 12 Suppl 1():63-7. PubMed ID: 18924445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonin in the gut: Blessing or a curse.
    Banskota S; Ghia JE; Khan WI
    Biochimie; 2019 Jun; 161():56-64. PubMed ID: 29909048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clostridium ramosum regulates enterochromaffin cell development and serotonin release.
    Mandić AD; Woting A; Jaenicke T; Sander A; Sabrowski W; Rolle-Kampcyk U; von Bergen M; Blaut M
    Sci Rep; 2019 Feb; 9(1):1177. PubMed ID: 30718836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diet differentially regulates enterochromaffin cell serotonin content, density and nutrient sensitivity in the mouse small and large intestine.
    Martin AM; Jones LA; Jessup CF; Sun EW; Keating DJ
    Neurogastroenterol Motil; 2020 Aug; 32(8):e13869. PubMed ID: 32378785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enterochromaffin cells and 5-HT signaling in the pathophysiology of disorders of gastrointestinal function.
    Crowell MD; Shetzline MA; Moses PL; Mawe GM; Talley NJ
    Curr Opin Investig Drugs; 2004 Jan; 5(1):55-60. PubMed ID: 14983974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malfunctioned inflammatory response and serotonin metabolism at the microbiota-gut-brain axis drive feather pecking behavior in laying hens.
    Huang C; Hao E; Yue Q; Liu M; Wang D; Chen Y; Shi L; Zeng D; Zhao G; Chen H
    Poult Sci; 2023 Aug; 102(8):102686. PubMed ID: 37327743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Gut Microbiota Composition by Serotonin Signaling Influences Intestinal Immune Response and Susceptibility to Colitis.
    Kwon YH; Wang H; Denou E; Ghia JE; Rossi L; Fontes ME; Bernier SP; Shajib MS; Banskota S; Collins SM; Surette MG; Khan WI
    Cell Mol Gastroenterol Hepatol; 2019; 7(4):709-728. PubMed ID: 30716420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Diverse Metabolic Roles of Peripheral Serotonin.
    Martin AM; Young RL; Leong L; Rogers GB; Spencer NJ; Jessup CF; Keating DJ
    Endocrinology; 2017 May; 158(5):1049-1063. PubMed ID: 28323941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Multifaceted Role of Serotonin in Intestinal Homeostasis.
    Koopman N; Katsavelis D; Hove AST; Brul S; Jonge WJ; Seppen J
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells.
    Reigstad CS; Salmonson CE; Rainey JF; Szurszewski JH; Linden DR; Sonnenburg JL; Farrugia G; Kashyap PC
    FASEB J; 2015 Apr; 29(4):1395-403. PubMed ID: 25550456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD4+ T cell-mediated immunological control of enterochromaffin cell hyperplasia and 5-hydroxytryptamine production in enteric infection.
    Wang H; Steeds J; Motomura Y; Deng Y; Verma-Gandhu M; El-Sharkawy RT; McLaughlin JT; Grencis RK; Khan WI
    Gut; 2007 Jul; 56(7):949-57. PubMed ID: 17303597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.