BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 35198436)

  • 1. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target.
    Ler AAL; Carty MP
    Front Oncol; 2021; 11():822500. PubMed ID: 35198436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.
    Venkadakrishnan J; Lahane G; Dhar A; Xiao W; Bhat KM; Pandita TK; Bhat A
    Mol Cell Biol; 2023; 43(8):401-425. PubMed ID: 37439479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance of lesions in E. coli: Chronological competition between Translesion Synthesis and Damage Avoidance.
    Fuchs RP
    DNA Repair (Amst); 2016 Aug; 44():51-58. PubMed ID: 27321147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filling gaps in translesion DNA synthesis in human cells.
    Quinet A; Lerner LK; Martins DJ; Menck CFM
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt B):127-142. PubMed ID: 30442338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerase Delta in Eukaryotes: How is It Transiently Exchanged with Specialized DNA Polymerases During Translesion DNA Synthesis?
    Liu F; Yang Y; Zhou Y
    Curr Protein Pept Sci; 2018; 19(8):790-804. PubMed ID: 29708067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of DNA Damage Tolerance: Post-Translational Regulation of PCNA.
    Leung W; Baxley RM; Moldovan GL; Bielinsky AK
    Genes (Basel); 2018 Dec; 10(1):. PubMed ID: 30586904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of DNA damage tolerance.
    Bi X
    World J Biol Chem; 2015 Aug; 6(3):48-56. PubMed ID: 26322163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the molecular interactions in DNA damage tolerances.
    Hashimoto H; Hishiki A; Hara K; Kikuchi S
    Biophys Physicobiol; 2017; 14():199-205. PubMed ID: 29362705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass.
    Wilkinson NA; Mnuskin KS; Ashton NW; Woodgate R
    Cancers (Basel); 2020 Oct; 12(10):. PubMed ID: 33023096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution genomic assays provide insight into the division of labor between TLS and HDR in mammalian replication of damaged DNA.
    Livneh Z; Cohen IS; Paz-Elizur T; Davidovsky D; Carmi D; Swain U; Mirlas-Neisberg N
    DNA Repair (Amst); 2016 Aug; 44():59-67. PubMed ID: 27262613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The NuA4 complex promotes translesion synthesis (TLS)-mediated DNA damage tolerance.
    Renaud-Young M; Lloyd DC; Chatfield-Reed K; George I; Chua G; Cobb J
    Genetics; 2015 Apr; 199(4):1065-76. PubMed ID: 25701288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct requirements for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage.
    Wang Z; Xiao W
    Curr Genet; 2020 Oct; 66(5):1019-1028. PubMed ID: 32623695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of Post-Replication DNA Repair.
    Gao Y; Mutter-Rottmayer E; Zlatanou A; Vaziri C; Yang Y
    Genes (Basel); 2017 Feb; 8(2):. PubMed ID: 28208741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA damage tolerance: a double-edged sword guarding the genome.
    Ghosal G; Chen J
    Transl Cancer Res; 2013; 2(3):107-129. PubMed ID: 24058901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance.
    Haynes B; Saadat N; Myung B; Shekhar MP
    Mutat Res Rev Mutat Res; 2015; 763():258-66. PubMed ID: 25795124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases.
    Zhao L; Washington MT
    Genes (Basel); 2017 Jan; 8(1):. PubMed ID: 28075396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle.
    Hedglin M; Benkovic SJ
    Chem Rev; 2017 Jun; 117(12):7857-7877. PubMed ID: 28497687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome.
    Quinet A; Vessoni AT; Rocha CR; Gottifredi V; Biard D; Sarasin A; Menck CF; Stary A
    DNA Repair (Amst); 2014 Feb; 14():27-38. PubMed ID: 24380689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching.
    Tsuda M; Ogawa S; Ooka M; Kobayashi K; Hirota K; Wakasugi M; Matsunaga T; Sakuma T; Yamamoto T; Chikuma S; Sasanuma H; Debatisse M; Doherty AJ; Fuchs RP; Takeda S
    PLoS One; 2019; 14(3):e0213383. PubMed ID: 30840704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.