BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 35198603)

  • 1. Structural and Functional Diversity of Animal Toxins Interacting With GPCRs.
    Van Baelen AC; Robin P; Kessler P; Maïga A; Gilles N; Servent D
    Front Mol Biosci; 2022; 9():811365. PubMed ID: 35198603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polypharmacology profiles and phylogenetic analysis of three-finger toxins from mamba venom: case of aminergic toxins.
    Blanchet G; Collet G; Mourier G; Gilles N; Fruchart-Gaillard C; Marcon E; Servent D
    Biochimie; 2014 Aug; 103():109-17. PubMed ID: 24793485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snake- and Spider-Venom-Derived Toxins as Lead Compounds for Drug Development.
    Lazarovici P
    Methods Mol Biol; 2020; 2068():3-26. PubMed ID: 31576520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tarantulas: eight-legged pharmacists and combinatorial chemists.
    Escoubas P; Rash L
    Toxicon; 2004 Apr; 43(5):555-74. PubMed ID: 15066413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal toxins acting on voltage-gated potassium channels.
    Mouhat S; Andreotti N; Jouirou B; Sabatier JM
    Curr Pharm Des; 2008; 14(24):2503-18. PubMed ID: 18781998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic and structural characterization of Kunitz-type peptide LmKTT-1a highlights diversity and evolution of scorpion potassium channel toxins.
    Chen Z; Luo F; Feng J; Yang W; Zeng D; Zhao R; Cao Z; Liu M; Li W; Jiang L; Wu Y
    PLoS One; 2013; 8(4):e60201. PubMed ID: 23573241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New α-adrenergic property for synthetic MTβ and CM-3 three-finger fold toxins from black mamba.
    Blanchet G; Upert G; Mourier G; Gilquin B; Gilles N; Servent D
    Toxicon; 2013 Dec; 75():160-7. PubMed ID: 23648423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective targeting of G-protein-coupled receptor subtypes with venom peptides.
    Näreoja K; Näsman J
    Acta Physiol (Oxf); 2012 Feb; 204(2):186-201. PubMed ID: 21481193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions.
    Kessler P; Marchot P; Silva M; Servent D
    J Neurochem; 2017 Aug; 142 Suppl 2():7-18. PubMed ID: 28326549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a novel snake peptide toxin displaying high affinity and antagonist behaviour for the α2-adrenoceptors.
    Rouget C; Quinton L; Maïga A; Gales C; Masuyer G; Malosse C; Chamot-Rooke J; Thai R; Mourier G; De Pauw E; Gilles N; Servent D
    Br J Pharmacol; 2010 Nov; 161(6):1361-74. PubMed ID: 20659106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid receptors in living cells.
    Stoeber M; Jullié D; Li J; Chakraborty S; Majumdar S; Lambert NA; Manglik A; von Zastrow M
    Elife; 2020 Feb; 9():. PubMed ID: 32096468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural space of intramolecular peptide disulfides: Analysis of peptide toxins retrieved from venomous peptide databases.
    Govindu PCV; Chakraborty P; Dutta A; Gowd KH
    Comput Biol Chem; 2017 Jun; 68():194-203. PubMed ID: 28365475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutively activated G protein-coupled receptors: a novel approach to CNS drug discovery.
    Menzaghi F; Behan DP; Chalmers DT
    Curr Drug Targets CNS Neurol Disord; 2002 Feb; 1(1):105-21. PubMed ID: 12769637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design.
    Kooistra AJ; Kuhne S; de Esch IJ; Leurs R; de Graaf C
    Br J Pharmacol; 2013 Sep; 170(1):101-26. PubMed ID: 23713847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Class A GPCRs to bitter taste receptors: Structural motifs, ligand interactions and agonist-to-antagonist ratios.
    Di Pizio A; Levit A; Slutzki M; Behrens M; Karaman R; Niv MY
    Methods Cell Biol; 2016; 132():401-27. PubMed ID: 26928553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide ligand recognition by G protein-coupled receptors.
    Krumm BE; Grisshammer R
    Front Pharmacol; 2015; 6():48. PubMed ID: 25852552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold.
    Gao B; Harvey PJ; Craik DJ; Ronjat M; De Waard M; Zhu S
    Biosci Rep; 2013 Jun; 33(3):. PubMed ID: 23721518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging concepts of guanine nucleotide-binding protein-coupled receptor (GPCR) function and implications for high throughput screening.
    Eglen RM; Bosse R; Reisine T
    Assay Drug Dev Technol; 2007 Jun; 5(3):425-51. PubMed ID: 17638542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Cystine Knot Is Responsible for the Exceptional Stability of the Insecticidal Spider Toxin ω-Hexatoxin-Hv1a.
    Herzig V; King GF
    Toxins (Basel); 2015 Oct; 7(10):4366-80. PubMed ID: 26516914
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.