These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3519864)

  • 1. Control of the development of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine: results and speculation.
    Hoskins SG
    J Neurobiol; 1986 May; 17(3):203-29. PubMed ID: 3519864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors involved in the development of ipsilateral retinothalamic projections in Xenopus laevis.
    Kennard C
    J Embryol Exp Morphol; 1981 Oct; 65():199-217. PubMed ID: 7334300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. III. The role of thyroxine.
    Hoskins SG; Grobstein P
    J Neurosci; 1985 Apr; 5(4):930-40. PubMed ID: 2984360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine.
    Hoskins SG; Grobstein P
    Nature; 1984 Feb 23-29; 307(5953):730-3. PubMed ID: 6700701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. II. Ingrowth of optic nerve fibers and production of ipsilaterally projecting retinal ganglion cells.
    Hoskins SG; Grobstein P
    J Neurosci; 1985 Apr; 5(4):920-9. PubMed ID: 2984359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kainic acid intraocular injections during the postnatal critical period induce plastic changes in the visual system.
    Pérez-Rico C; de la Villa P; Reinoso-Suárez F; Gómez-Ramos P
    Neurosci Res; 2009 Apr; 63(4):244-50. PubMed ID: 19167438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal patterns of retinal ganglion cell death during Xenopus development.
    Gaze RM; Grant P
    J Comp Neurol; 1992 Jan; 315(3):264-74. PubMed ID: 1740544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs.
    Hoskins SG; Grobstein P
    J Neurosci; 1985 Apr; 5(4):911-9. PubMed ID: 2984358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets.
    Ellsworth CA; Lyckman AW; Feldheim DA; Flanagan JG; Sur M
    J Comp Neurol; 2005 Jul; 488(2):140-51. PubMed ID: 15924339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of an abnormal ipsilateral visuotectal projection in Xenopus is delayed by the presence of optic fibres from the other eye.
    Straznicky C; Tay D; Glastonbury J
    J Embryol Exp Morphol; 1980 Jun; 57():129-41. PubMed ID: 7430926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the transient ipsilateral retinotectal projection in the chick embryo: a numerical fluorescence-microscopic analysis.
    Thanos S; Bonhoeffer F
    J Comp Neurol; 1984 Apr; 224(3):407-14. PubMed ID: 6715587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations of the crossed parabigeminotectal projection induced by neonatal eye removal in rats.
    Stevenson JA; Lund RD
    J Comp Neurol; 1982 May; 207(2):191-202. PubMed ID: 7096647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal development of primary visual projections in the tammar wallaby (Macropus eugenii).
    Wye-Dvorak J
    J Comp Neurol; 1984 Oct; 228(4):491-508. PubMed ID: 6490967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ephrin-B regulates the Ipsilateral routing of retinal axons at the optic chiasm.
    Nakagawa S; Brennan C; Johnson KG; Shewan D; Harris WA; Holt CE
    Neuron; 2000 Mar; 25(3):599-610. PubMed ID: 10774728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of the developing Xenopus retinotectal projection following injections of antibodies against beta1 integrin receptors and N-cadherin.
    Stone KE; Sakaguchi DS
    Dev Biol; 1996 Nov; 180(1):297-310. PubMed ID: 8948592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure of the crossed isthmotectal projection in Xenopus frogs.
    Udin SB; Fisher MD; Norden JJ
    J Comp Neurol; 1990 Feb; 292(2):246-54. PubMed ID: 2319012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of retinal central projection in Xenopus tadpoles.
    Fujisawa H; Takagi S
    Prog Clin Biol Res; 1986; 217B():109-12. PubMed ID: 3749169
    [No Abstract]   [Full Text] [Related]  

  • 18. The development of the ipsilateral retinothalamic projections in the Xenopus toad.
    Khalil SH; Székely G
    Acta Biol Acad Sci Hung; 1976; 27(4):253-60. PubMed ID: 1032052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ipsilaterally projecting retinal ganglion cells in Xenopus laevis: an HRP study.
    Schütte M; Hoskins SG
    J Comp Neurol; 1993 May; 331(4):482-94. PubMed ID: 8509506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.