These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35198908)

  • 1. A review of vibration energy harvesting in rail transportation field.
    Qi L; Pan H; Pan Y; Luo D; Yan J; Zhang Z
    iScience; 2022 Mar; 25(3):103849. PubMed ID: 35198908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for enhancing low-frequency performances of triboelectric, electrochemical, piezoelectric, and dielectric elastomer energy harvesting: recent progress and challenges.
    Xiahou X; Wu S; Guo X; Li H; Chen C; Xu M
    Sci Bull (Beijing); 2023 Aug; 68(15):1687-1714. PubMed ID: 37451961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration energy harvesting from tunnel invert-filling using rubberized concrete.
    Jin H; Li Z; Wang Z; Tang S
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30167-30182. PubMed ID: 36418839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design optimization of PVDF-based piezoelectric energy harvesters.
    Song J; Zhao G; Li B; Wang J
    Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting.
    Ryu H; Yoon HJ; Kim SW
    Adv Mater; 2019 Aug; 31(34):e1802898. PubMed ID: 30809883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy.
    Zhou Z; Zhang H; Qin W; Zhu P; Wang P; Du W
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic Electromagnetic Energy Harvester for Railway Applications-Development and Test with Wireless Sensor.
    Hadas Z; Rubes O; Ksica F; Chalupa J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overview of micro/nano-wind energy harvesters and sensors.
    Fu X; Bu T; Li C; Liu G; Zhang C
    Nanoscale; 2020 Dec; 12(47):23929-23944. PubMed ID: 33244556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data of piezoelectric vibration energy harvesting of a bridge undergoing vibration testing and train passage.
    Cahill P; Hazra B; Karoumi R; Mathewson A; Pakrashi V
    Data Brief; 2018 Apr; 17():261-266. PubMed ID: 29387741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibration-Energy-Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications.
    Dong L; Closson AB; Jin C; Trase I; Chen Z; Zhang JXJ
    Adv Mater Technol; 2019 Oct; 4(10):. PubMed ID: 33829079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and Experimental Study of a Piezoelectric Stack Energy Harvester for Railway Track Vibrations.
    Min Z; Hou C; Sui G; Shan X; Xie T
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibration Energy Harvesting by Means of Piezoelectric Patches: Application to Aircrafts.
    Tommasino D; Moro F; Bernay B; De Lumley Woodyear T; de Pablo Corona E; Doria A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A vibration energy harvester for freight train track self-powered application.
    Liu G; Fang Z; Zhang Z; Tan X; Dai C; Wu X; Jin Z; Li D
    iScience; 2022 Oct; 25(10):105155. PubMed ID: 36204274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Experimental Investigation of an Ultra-Low Frequency, Low-Intensity, and Multidirectional Piezoelectric Energy Harvester with Liquid as the Energy-Capture Medium.
    Li N; Yang F; Luo T; Qin L
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning.
    Song HC; Kim SW; Kim HS; Lee DG; Kang CY; Nahm S
    Adv Mater; 2020 Dec; 32(51):e2002208. PubMed ID: 33006178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.
    Harne RL
    J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.