BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35199037)

  • 1. Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization.
    Anastasaki C; Wilson AF; Chen AS; Wegscheid ML; Gutmann DH
    STAR Protoc; 2022 Mar; 3(1):101173. PubMed ID: 35199037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying differentiation of progenitor populations using cerebral organoid models for neurodevelopmental disorders.
    Schroder AL; Fairbanks-Santana M; Rakotomamonjy J; Guemez-Gamboa A
    STAR Protoc; 2024 Mar; 5(1):102904. PubMed ID: 38427568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of beta-like cells from human induced pluripotent stem cell-derived pancreatic progenitor organoids.
    Pedraza-Arevalo S; Cujba AM; Alvarez-Fallas ME; Sancho R
    STAR Protoc; 2022 Sep; 3(3):101656. PubMed ID: 36092820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for differentiation of functional macrophages from human induced pluripotent stem cells.
    Jeong S; Chang H; Hong SH
    STAR Protoc; 2024 Mar; 5(1):102925. PubMed ID: 38421862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders.
    Lee CT; Bendriem RM; Wu WW; Shen RF
    J Biomed Sci; 2017 Aug; 24(1):59. PubMed ID: 28822354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized protocol for analysis of neural stem proliferation in human-pluripotent-stem-cell-derived cerebral organoids.
    Tang XY; Wang D; Zhang XY; Xu M; Liu Y
    STAR Protoc; 2023 Mar; 4(2):102169. PubMed ID: 36924505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for generating in vitro glioma models using human-induced pluripotent- or embryonic-stem-cell-derived cerebral organoids.
    Feng Y; Zheng H; Tang J; Li X; Tian R; Ma S
    STAR Protoc; 2023 Sep; 4(3):102346. PubMed ID: 37421615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method to Generate Dorsal Forebrain Brain Organoids from Human Pluripotent Stem Cells.
    Sebastian R; Pavon NS; Song Y; Diep KT; Pak C
    Methods Mol Biol; 2023; 2683():169-183. PubMed ID: 37300774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor.
    Qian X; Jacob F; Song MM; Nguyen HN; Song H; Ming GL
    Nat Protoc; 2018 Mar; 13(3):565-580. PubMed ID: 29470464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of improved human cerebral organoids from single copy DYRK1A knockout induced pluripotent stem cells in trisomy 21: hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome.
    Çağlayan ES
    Cell Biol Int; 2016 Dec; 40(12):1256-1270. PubMed ID: 27743462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and validation of
    Martens YA; Xu S; Tait R; Li G; Zhao XC; Lu W; Liu CC; Kanekiyo T; Bu G; Zhao J
    STAR Protoc; 2021 Jun; 2(2):100571. PubMed ID: 34151296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of human pluripotent stem cell-derived fused organoids with oligodendroglia and myelin.
    Kim H; Jiang P
    STAR Protoc; 2021 Jun; 2(2):100443. PubMed ID: 33851141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of iPSC-derived Human Brain Organoids to Model Early Neurodevelopmental Disorders.
    Gabriel E; Gopalakrishnan J
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28448044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol for controlled cortical impact in human cerebral organoids to model traumatic brain injury.
    Ramirez S; Mukherjee A; Sepulveda SE; Gherardelli C; Becerra-Calixto A; Bravo-Vasquez N; Soto C
    STAR Protoc; 2021 Dec; 2(4):100987. PubMed ID: 34927096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of highly pure motor neurons from human induced pluripotent stem cells.
    Akter M; Cui H; Sepehrimanesh M; Hosain MA; Ding B
    STAR Protoc; 2022 Mar; 3(1):101223. PubMed ID: 35300000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol to generate large human intestinal organoids using a rotating bioreactor.
    Takahashi J; Sugihara HY; Kato S; Nagata S; Okamoto R; Mizutani T
    STAR Protoc; 2023 Sep; 4(3):102374. PubMed ID: 37352105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of hepatobiliary organoids from human induced pluripotent stem cells.
    Wu F; Wu D; Ren Y; Huang Y; Feng B; Zhao N; Zhang T; Chen X; Chen S; Xu A
    J Hepatol; 2019 Jun; 70(6):1145-1158. PubMed ID: 30630011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive characterization of fetal and mature retinal cell identity to assess the fidelity of retinal organoids.
    Kim HJ; O'Hara-Wright M; Kim D; Loi TH; Lim BY; Jamieson RV; Gonzalez-Cordero A; Yang P
    Stem Cell Reports; 2023 Jan; 18(1):175-189. PubMed ID: 36630901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urine Sample-Derived Cerebral Organoids Suitable for Studying Neurodevelopment and Pharmacological Responses.
    Lin VJT; Hu J; Zolekar A; Yan LJ; Wang YC
    Front Cell Dev Biol; 2020; 8():304. PubMed ID: 32528947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic 3D Combinatorial Generation of hPSC-Derived Neuromesodermal Organoids With Diverse Regional and Cellular Identities.
    Whye D; Wood D; Kim KH; Chen C; Makhortova N; Sahin M; Buttermore ED
    Curr Protoc; 2022 Oct; 2(10):e568. PubMed ID: 36264199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.