These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 35199138)
1. POIBM: batch correction of heterogeneous RNA-seq datasets through latent sample matching. Holmström S; Hautaniemi S; Häkkinen A Bioinformatics; 2022 Apr; 38(9):2474-2480. PubMed ID: 35199138 [TBL] [Abstract][Full Text] [Related]
2. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets. Andreatta M; Berenstein AJ; Carmona SJ Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562 [TBL] [Abstract][Full Text] [Related]
3. SCIBER: a simple method for removing batch effects from single-cell RNA-sequencing data. Gan D; Li J Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36548380 [TBL] [Abstract][Full Text] [Related]
4. flexiMAP: a regression-based method for discovering differential alternative polyadenylation events in standard RNA-seq data. Szkop KJ; Moss DS; Nobeli I Bioinformatics; 2021 Jun; 37(10):1461-1464. PubMed ID: 33051680 [TBL] [Abstract][Full Text] [Related]
6. scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment. Fei T; Yu T Bioinformatics; 2020 May; 36(10):3115-3123. PubMed ID: 32053185 [TBL] [Abstract][Full Text] [Related]
7. NewWave: a scalable R/Bioconductor package for the dimensionality reduction and batch effect removal of single-cell RNA-seq data. Agostinis F; Romualdi C; Sales G; Risso D Bioinformatics; 2022 Apr; 38(9):2648-2650. PubMed ID: 35266509 [TBL] [Abstract][Full Text] [Related]
8. Computational identification of micro-structural variations and their proteogenomic consequences in cancer. Lin YY; Gawronski A; Hach F; Li S; Numanagic I; Sarrafi I; Mishra S; McPherson A; Collins CC; Radovich M; Tang H; Sahinalp SC Bioinformatics; 2018 May; 34(10):1672-1681. PubMed ID: 29267878 [TBL] [Abstract][Full Text] [Related]
9. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis. Xu X; Yu X; Hu G; Wang K; Zhang J; Li X Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114 [TBL] [Abstract][Full Text] [Related]
10. An ontology-based method for assessing batch effect adjustment approaches in heterogeneous datasets. Schmidt F; List M; Cukuroglu E; Köhler S; Göke J; Schulz MH Bioinformatics; 2018 Sep; 34(17):i908-i916. PubMed ID: 30423059 [TBL] [Abstract][Full Text] [Related]
11. scRNABatchQC: multi-samples quality control for single cell RNA-seq data. Liu Q; Sheng Q; Ping J; Ramirez MA; Lau KS; Coffey RJ; Shyr Y Bioinformatics; 2019 Dec; 35(24):5306-5308. PubMed ID: 31373345 [TBL] [Abstract][Full Text] [Related]
12. Detecting hidden batch factors through data-adaptive adjustment for biological effects. Yi H; Raman AT; Zhang H; Allen GI; Liu Z Bioinformatics; 2018 Apr; 34(7):1141-1147. PubMed ID: 29617963 [TBL] [Abstract][Full Text] [Related]
13. Mitigating the adverse impact of batch effects in sample pattern detection. Fei T; Zhang T; Shi W; Yu T Bioinformatics; 2018 Aug; 34(15):2634-2641. PubMed ID: 29506177 [TBL] [Abstract][Full Text] [Related]
14. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606 [TBL] [Abstract][Full Text] [Related]
15. 2DImpute: imputation in single-cell RNA-seq data from correlations in two dimensions. Zhu K; Anastassiou D Bioinformatics; 2020 Jun; 36(11):3588-3589. PubMed ID: 32108864 [TBL] [Abstract][Full Text] [Related]
16. STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data. Andreatta M; Carmona SJ Bioinformatics; 2021 May; 37(6):882-884. PubMed ID: 32845323 [TBL] [Abstract][Full Text] [Related]
18. scRNAss: a single-cell RNA-seq assembler via imputing dropouts and combing junctions. Liu J; Liu X; Ren X; Li G Bioinformatics; 2019 Nov; 35(21):4264-4271. PubMed ID: 30951147 [TBL] [Abstract][Full Text] [Related]
19. Classifying next-generation sequencing data using a zero-inflated Poisson model. Zhou Y; Wan X; Zhang B; Tong T Bioinformatics; 2018 Apr; 34(8):1329-1335. PubMed ID: 29186294 [TBL] [Abstract][Full Text] [Related]
20. Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality. Sprang M; Andrade-Navarro MA; Fontaine JF BMC Bioinformatics; 2022 Jul; 23(Suppl 6):279. PubMed ID: 35836114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]