BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35199257)

  • 1. Optimizing a Deep Residual Neural Network with Genetic Algorithm for Acute Lymphoblastic Leukemia Classification.
    Rodrigues LF; Backes AR; Travençolo BAN; de Oliveira GMB
    J Digit Imaging; 2022 Jun; 35(3):623-637. PubMed ID: 35199257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BO-ALLCNN: Bayesian-Based Optimized CNN for Acute Lymphoblastic Leukemia Detection in Microscopic Blood Smear Images.
    Atteia G; Alhussan AA; Samee NA
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images.
    Das BK; Dutta HS
    Med Biol Eng Comput; 2020 Nov; 58(11):2789-2803. PubMed ID: 32929660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks.
    Shafique S; Tehsin S
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818802789. PubMed ID: 30261827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of acute lymphoblastic leukemia using deep learning.
    Rehman A; Abbas N; Saba T; Rahman SIU; Mehmood Z; Kolivand H
    Microsc Res Tech; 2018 Nov; 81(11):1310-1317. PubMed ID: 30351463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Method Diagnosis of Blood Microscopic Sample for Early Detection of Acute Lymphoblastic Leukemia Based on Deep Learning and Hybrid Techniques.
    Abunadi I; Senan EM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving classification accuracy of fine-tuned CNN models: Impact of hyperparameter optimization.
    Wojciuk M; Swiderska-Chadaj Z; Siwek K; Gertych A
    Heliyon; 2024 Mar; 10(5):e26586. PubMed ID: 38463880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison.
    Anilkumar KK; Manoj VJ; Sagi TM
    Med Eng Phys; 2021 Dec; 98():8-19. PubMed ID: 34848042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Automated Optimization of Residual Convolutional Neural Networks for Electrocardiogram Classification.
    Fki Z; Ammar B; Ayed MB
    Cognit Comput; 2023 Feb; ():1-11. PubMed ID: 36819737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ensemble-acute lymphoblastic leukemia model for acute lymphoblastic leukemia image classification.
    Huang ML; Huang ZB
    Math Biosci Eng; 2024 Jan; 21(2):1959-1978. PubMed ID: 38454670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AML, ALL, and CML classification and diagnosis based on bone marrow cell morphology combined with convolutional neural network: A STARD compliant diagnosis research.
    Huang F; Guang P; Li F; Liu X; Zhang W; Huang W
    Medicine (Baltimore); 2020 Nov; 99(45):e23154. PubMed ID: 33157999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Ear Imagery Database using Bayesian Optimization based on CNN-LSTM Architecture.
    Mohammed KK; Hassanien AE; Afify HM
    J Digit Imaging; 2022 Aug; 35(4):947-961. PubMed ID: 35296939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A convolutional neural network-based learning approach to acute lymphoblastic leukaemia detection with automated feature extraction.
    Anwar S; Alam A
    Med Biol Eng Comput; 2020 Dec; 58(12):3113-3121. PubMed ID: 33159270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient model of residual based convolutional neural network with Bayesian optimization for the classification of malarial cell images.
    Di Ker A
    Comput Biol Med; 2022 Sep; 148():105635. PubMed ID: 35961802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timely Diagnosis of Acute Lymphoblastic Leukemia Using Artificial Intelligence-Oriented Deep Learning Methods.
    Rezayi S; Mohammadzadeh N; Bouraghi H; Saeedi S; Mohammadpour A
    Comput Intell Neurosci; 2021; 2021():5478157. PubMed ID: 34804144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method.
    Chen YM; Chou FI; Ho WH; Tsai JT
    BMC Bioinformatics; 2022 Jan; 22(Suppl 5):615. PubMed ID: 35016610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for Diagnosis of Acute Lymphoblastic Leukemia Based on ViT-CNN Ensemble Model.
    Jiang Z; Dong Z; Wang L; Jiang W
    Comput Intell Neurosci; 2021; 2021():7529893. PubMed ID: 34471407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ENAS-B: Combining ENAS With Bayesian Optimization for Automatic Design of Optimal CNN Architectures for Breast Lesion Classification From Ultrasound Images.
    Ahmed M; Du H; AlZoubi A
    Ultrason Imaging; 2024 Jan; 46(1):17-28. PubMed ID: 37981781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IoMT-Based Automated Detection and Classification of Leukemia Using Deep Learning.
    Bibi N; Sikandar M; Ud Din I; Almogren A; Ali S
    J Healthc Eng; 2020; 2020():6648574. PubMed ID: 33343851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.