These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35199413)

  • 41. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China.
    Liu Z
    Sci Rep; 2016 Nov; 6():37572. PubMed ID: 27857204
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests.
    Walther S; Voigt M; Thum T; Gonsamo A; Zhang Y; Köhler P; Jung M; Varlagin A; Guanter L
    Glob Chang Biol; 2016 Sep; 22(9):2979-96. PubMed ID: 26683113
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential declines in Alaskan boreal forest vitality related to climate and competition.
    Trugman AT; Medvigy D; Anderegg WRL; Pacala SW
    Glob Chang Biol; 2018 Mar; 24(3):1097-1107. PubMed ID: 29055122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Short-interval wildfire and drought overwhelm boreal forest resilience.
    Whitman E; Parisien MA; Thompson DK; Flannigan MD
    Sci Rep; 2019 Dec; 9(1):18796. PubMed ID: 31827128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Boreal forest health and global change.
    Gauthier S; Bernier P; Kuuluvainen T; Shvidenko AZ; Schepaschenko DG
    Science; 2015 Aug; 349(6250):819-22. PubMed ID: 26293953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drought stress mitigation by nitrogen in boreal forests inferred from stable isotopes.
    Dulamsuren C; Hauck M
    Glob Chang Biol; 2021 Oct; 27(20):5211-5224. PubMed ID: 34309985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice.
    Girardin MP; Guo XJ; De Jong R; Kinnard C; Bernier P; Raulier F
    Glob Chang Biol; 2014 Mar; 20(3):851-66. PubMed ID: 24115302
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Even modest climate change may lead to major transitions in boreal forests.
    Reich PB; Bermudez R; Montgomery RA; Rich RL; Rice KE; Hobbie SE; Stefanski A
    Nature; 2022 Aug; 608(7923):540-545. PubMed ID: 35948640
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire.
    Mekonnen ZA; Riley WJ; Randerson JT; Grant RF; Rogers BM
    Nat Plants; 2019 Sep; 5(9):952-958. PubMed ID: 31451797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe.
    Erasmi S; Klinge M; Dulamsuren C; Schneider F; Hauck M
    Environ Monit Assess; 2021 Mar; 193(4):200. PubMed ID: 33738573
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tropical cyclones moving into boreal forests: Relationships between disturbance areas and environmental drivers.
    Korznikov K; Kislov D; Doležal J; Petrenko T; Altman J
    Sci Total Environ; 2022 Oct; 844():156931. PubMed ID: 35772527
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.
    Girardin MP; Hogg EH; Bernier PY; Kurz WA; Guo XJ; Cyr G
    Glob Chang Biol; 2016 Feb; 22(2):627-43. PubMed ID: 26507106
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Response diversity, functional redundancy, and post-logging productivity in northern temperate and boreal forests.
    Correia DLP; Raulier F; Bouchard M; Filotas É
    Ecol Appl; 2018 Jul; 28(5):1282-1291. PubMed ID: 29672967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers.
    Mishra NB; Mainali KP
    Sci Total Environ; 2017 Jun; 587-588():326-339. PubMed ID: 28245933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests.
    Yu H; Holopainen JK; Kivimäenpää M; Virtanen A; Blande JD
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.
    Kelly R; Chipman ML; Higuera PE; Stefanova I; Brubaker LB; Hu FS
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13055-60. PubMed ID: 23878258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.
    Krishnaswamy J; John R; Joseph S
    Glob Chang Biol; 2014 Jan; 20(1):203-15. PubMed ID: 23966269
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest.
    Hart SJ; Henkelman J; McLoughlin PD; Nielsen SE; Truchon-Savard A; Johnstone JF
    Glob Chang Biol; 2019 Mar; 25(3):869-884. PubMed ID: 30570807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing'an Mountains, China.].
    Huang C; He HS; Liang Y; Wu ZW
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2088-2100. PubMed ID: 30039645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stand basal area and solar radiation amplify white spruce climate sensitivity in interior Alaska: Evidence from carbon isotopes and tree rings.
    Nicklen EF; Roland CA; Csank AZ; Wilmking M; Ruess RW; Muldoon LA
    Glob Chang Biol; 2019 Mar; 25(3):911-926. PubMed ID: 30408264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.