These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35199430)

  • 1. Biodegradation of pollutants by exoelectrogenic bacteria is not always performed extracellularly.
    Jeuken LJC
    Environ Microbiol; 2022 Apr; 24(4):1835-1837. PubMed ID: 35199430
    [No Abstract]   [Full Text] [Related]  

  • 2. Dehalogenation of trichloroethylene in microbial electrolysis cells with biogenic palladium nanoparticles.
    De Corte S; Hennebel T; Benner J; De Gusseme B; Verstraete W; Boon N
    Commun Agric Appl Biol Sci; 2011; 76(1):167-70. PubMed ID: 21539223
    [No Abstract]   [Full Text] [Related]  

  • 3. A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability.
    Xiao X; Liu QY; Li TT; Zhang F; Li WW; Zhou XT; Xu MY; Li Q; Yu HQ
    Bioresour Technol; 2017 Oct; 241():743-749. PubMed ID: 28628978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of carbon sources on nitrogen removal performance in bioelectrochemical systems.
    Feng H; Huang B; Zou Y; Li N; Wang M; Yin J; Cong Y; Shen D
    Bioresour Technol; 2013 Jan; 128():565-70. PubMed ID: 23211481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology.
    Guang L; Koomson DA; Jingyu H; Ewusi-Mensah D; Miwornunyuie N
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32050646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity.
    Xia C; Xu M; Liu J; Guo J; Yang Y
    Bioresour Technol; 2015 Aug; 190():420-3. PubMed ID: 25936443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using microbes and wastewater to desalinate water.
    Betts K
    Environ Sci Technol; 2009 Sep; 43(18):6895. PubMed ID: 19806713
    [No Abstract]   [Full Text] [Related]  

  • 8. Diversity of microbes and potential exoelectrogenic bacteria on anode surface in microbial fuel cells.
    Sun Y; Zuo J; Cui L; Deng Q; Dang Y
    J Gen Appl Microbiol; 2010 Feb; 56(1):19-29. PubMed ID: 20339216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the role of anodic potential in the biodegradation of carbamazepine in bioelectrochemical systems.
    Tahir K; Miran W; Nawaz M; Jang J; Shahzad A; Moztahida M; Kim B; Azam M; Jeong SE; Jeon CO; Lim SR; Lee DS
    Sci Total Environ; 2019 Oct; 688():56-64. PubMed ID: 31229828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.
    Zhang J; Zhang Y; Quan X; Chen S; Afzal S
    Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The industrial evolution.
    Salter SJ
    Nat Rev Microbiol; 2012 Dec; 10(12):806. PubMed ID: 23147705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autotrophic nitrite removal in the cathode of microbial fuel cells.
    Puig S; Serra M; Vilar-Sanz A; Cabré M; Bañeras L; Colprim J; Balaguer MD
    Bioresour Technol; 2011 Mar; 102(6):4462-7. PubMed ID: 21262566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of surrogate naphthenic acids and electricity generation in microbial fuel cells: bioelectrochemical and microbial characterizations.
    Valdes Labrada GM; Nemati M
    Bioprocess Biosyst Eng; 2018 Nov; 41(11):1635-1649. PubMed ID: 30046898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel growth and isolation medium for exoelectrogenic bacteria.
    Nazeer Z; Fernando EY
    Enzyme Microb Technol; 2022 Apr; 155():109995. PubMed ID: 35066396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress of research on the microbial fuel cells in the application of environment pollution treatment--a review].
    Yang Y; Sun G; Xu M
    Wei Sheng Wu Xue Bao; 2010 Jul; 50(7):847-52. PubMed ID: 20815229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells.
    Li Y; Zhang B; Cheng M; Li Y; Hao L; Guo H
    J Hazard Mater; 2016 Apr; 306():8-12. PubMed ID: 26685120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floating-type microbial fuel cell (FT-MFC) for treating organic-contaminated water.
    An J; Kim D; Chun Y; Lee SJ; Ng HY; Chang IS
    Environ Sci Technol; 2009 Mar; 43(5):1642-7. PubMed ID: 19350948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollutants affect algae-bacteria interactions: A critical review.
    You X; Xu N; Yang X; Sun W
    Environ Pollut; 2021 May; 276():116723. PubMed ID: 33611207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial ecology pushes frontiers in biotechnology.
    Kouzuma A; Watanabe K
    Microbes Environ; 2014; 29(1):1-3. PubMed ID: 24694563
    [No Abstract]   [Full Text] [Related]  

  • 20. The voltage signals of microbial fuel cell-based sensors positively correlated with methane emission flux in paddy fields of China.
    Wu SS; Hernández M; Deng YC; Han C; Hong X; Xu J; Zhong WH; Deng H
    FEMS Microbiol Ecol; 2019 Mar; 95(3):. PubMed ID: 30715248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.