These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35199444)
1. Evaluating the Capacitive Response in Metal Halide Perovskite Solar Cells. Taukeer Khan M; Khan F; Al-Ahmed A; Ahmad S; Al-Sulaiman F Chem Rec; 2022 Jul; 22(7):e202100330. PubMed ID: 35199444 [TBL] [Abstract][Full Text] [Related]
2. Dimensionality Control of SnO Zhao Y; Zhu J; He B; Tang Q ACS Appl Mater Interfaces; 2021 Mar; 13(9):11058-11066. PubMed ID: 33634693 [TBL] [Abstract][Full Text] [Related]
3. Correlating hysteresis phenomena with interfacial charge accumulation in perovskite solar cells. Chen T; Sun Z; Liang M; Xue S Phys Chem Chem Phys; 2019 Dec; 22(1):245-251. PubMed ID: 31803893 [TBL] [Abstract][Full Text] [Related]
4. Self-Aggregation-Controlled Rapid Chemical Bath Deposition of SnO Ko Y; Kim Y; Lee C; Kim T; Kim S; Yun YJ; Gwon HJ; Lee NH; Jun Y ChemSusChem; 2020 Aug; 13(16):4051-4063. PubMed ID: 32452168 [TBL] [Abstract][Full Text] [Related]
5. Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model. Riquelme A; Bennett LJ; Courtier NE; Wolf MJ; Contreras-Bernal L; Walker AB; Richardson G; Anta JA Nanoscale; 2020 Sep; 12(33):17385-17398. PubMed ID: 32789374 [TBL] [Abstract][Full Text] [Related]
6. Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. Almora O; Zarazua I; Mas-Marza E; Mora-Sero I; Bisquert J; Garcia-Belmonte G J Phys Chem Lett; 2015 May; 6(9):1645-52. PubMed ID: 26263328 [TBL] [Abstract][Full Text] [Related]
7. Rational Strategies for Efficient Perovskite Solar Cells. Seo J; Noh JH; Seok SI Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188 [TBL] [Abstract][Full Text] [Related]
8. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Wang B; Iocozzia J; Zhang M; Ye M; Yan S; Jin H; Wang S; Zou Z; Lin Z Chem Soc Rev; 2019 Sep; 48(18):4854-4891. PubMed ID: 31389932 [TBL] [Abstract][Full Text] [Related]
9. Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation. Cao J; Wu B; Chen R; Wu Y; Hui Y; Mao BW; Zheng N Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349858 [TBL] [Abstract][Full Text] [Related]
10. Spatially Resolved Carrier Dynamics at MAPbBr Ahmadi M; Collins L; Higgins K; Kim D; Lukosi E; Kalinin SV ACS Appl Mater Interfaces; 2019 Nov; 11(44):41551-41560. PubMed ID: 31595742 [TBL] [Abstract][Full Text] [Related]
11. Unraveling the Charge Extraction Mechanism of Perovskite Solar Cells Fabricated with Two-Step Spin Coating: Interfacial Energetics between Methylammonium Lead Iodide and C Shin D; Kang D; Jeong J; Park S; Kim M; Lee H; Yi Y J Phys Chem Lett; 2017 Nov; 8(21):5423-5429. PubMed ID: 29057656 [TBL] [Abstract][Full Text] [Related]
12. Utilization of Temperature-Sweeping Capacitive Techniques to Evaluate Band Gap Defect Densities in Photovoltaic Perovskites. Almora O; GarcĂa-Batlle M; Garcia-Belmonte G J Phys Chem Lett; 2019 Jul; 10(13):3661-3669. PubMed ID: 31188609 [TBL] [Abstract][Full Text] [Related]
13. Effect of Fullerene Passivation on the Charging and Discharging Behavior of Perovskite Solar Cells: Reduction of Bound Charges and Ion Accumulation. Shih YC; Wang L; Hsieh HC; Lin KF ACS Appl Mater Interfaces; 2018 Apr; 10(14):11722-11731. PubMed ID: 29557169 [TBL] [Abstract][Full Text] [Related]
14. Interfacial and structural modifications in perovskite solar cells. Ali J; Li Y; Gao P; Hao T; Song J; Zhang Q; Zhu L; Wang J; Feng W; Hu H; Liu F Nanoscale; 2020 Mar; 12(10):5719-5745. PubMed ID: 32118223 [TBL] [Abstract][Full Text] [Related]
15. Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. Sanchez RS; Gonzalez-Pedro V; Lee JW; Park NG; Kang YS; Mora-Sero I; Bisquert J J Phys Chem Lett; 2014 Jul; 5(13):2357-63. PubMed ID: 26279559 [TBL] [Abstract][Full Text] [Related]
16. Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation. Yang Y; Pham ND; Yao D; Fan L; Hoang MT; Tiong VT; Wang Z; Zhu H; Wang H ACS Appl Mater Interfaces; 2019 Aug; 11(31):28431-28441. PubMed ID: 31311262 [TBL] [Abstract][Full Text] [Related]
17. Interfacial Modification in Organic and Perovskite Solar Cells. Bi S; Leng X; Li Y; Zheng Z; Zhang X; Zhang Y; Zhou H Adv Mater; 2019 Nov; 31(45):e1805708. PubMed ID: 30600552 [TBL] [Abstract][Full Text] [Related]
18. New insights into the origin of hysteresis behavior in perovskite solar cells. Li X; Wang Y; Tai M; Zhao X; Gu Y; Han J; Shen H; Li J; Lin H Phys Chem Chem Phys; 2018 Jun; 20(23):16285-16293. PubMed ID: 29868673 [TBL] [Abstract][Full Text] [Related]
19. Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Peng J; Chen Y; Zheng K; Pullerits T; Liang Z Chem Soc Rev; 2017 Oct; 46(19):5714-5729. PubMed ID: 28770935 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic origin and unlocking of negative capacitance in perovskites solar cells. Khan MT; Huang P; Almohammedi A; Kazim S; Ahmad S iScience; 2021 Feb; 24(2):102024. PubMed ID: 33521597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]