These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35199498)

  • 1. Laser-Induced Graphene Superhydrophobic Surface Transition from Pinning to Rolling for Multiple Applications.
    Han Y; Han Y; Huang Y; Wang C; Liu H; Han L; Zhang Y
    Small Methods; 2022 Apr; 6(4):e2200096. PubMed ID: 35199498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces.
    Li Y; Luong DX; Zhang J; Tarkunde YR; Kittrell C; Sargunaraj F; Ji Y; Arnusch CJ; Tour JM
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28497883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable Nanoparticle Aggregation through a Superhydrophobic Laser-Induced Graphene Dynamic System for Surface-Enhanced Raman Scattering Detection.
    Han Y; Han Y; Sun J; Liu H; Luo X; Zhang Y; Han L
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3504-3514. PubMed ID: 34985257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-Induced Graphene.
    Ye R; James DK; Tour JM
    Acc Chem Res; 2018 Jul; 51(7):1609-1620. PubMed ID: 29924584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast and Eco-Friendly Fabrication Process for Robust, Repairable Superhydrophobic Metallic Surfaces with Tunable Water Adhesion.
    Tran NG; Chun DM
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28348-28358. PubMed ID: 35694823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Characterization of Superhydrophobic Graphene/Titanium Dioxide Nanoparticles Composite.
    Wu XH; Then YY
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Durable, Fluorine-free, and Transparent Superhydrophobic Surfaces for Oil/Water Separation.
    Chen C; Weng D; Chen S; Mahmood A; Wang J
    ACS Omega; 2019 Apr; 4(4):6947-6954. PubMed ID: 31459807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liang T; Feng Y; Zeng X
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3131-3141. PubMed ID: 28032982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic Copper Surface Textured by Laser for Delayed Icing Phenomenon.
    Li J; Zhou Y; Wang W; Xu C; Ren L
    Langmuir; 2020 Feb; 36(5):1075-1082. PubMed ID: 31958954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Easily Enlarged Superhydrophobic Copper Surfaces with Enhanced Corrosion Resistance, Excellent Self-Cleaning and Anti-Icing Performance by a Facile Method.
    Shi X; Zhao L; Wang J; Feng L
    J Nanosci Nanotechnol; 2020 Oct; 20(10):6317-6325. PubMed ID: 32384981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.
    Ryu J; Kim K; Park J; Hwang BG; Ko Y; Kim H; Han J; Seo E; Park Y; Lee SJ
    Sci Rep; 2017 May; 7(1):1981. PubMed ID: 28512304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings.
    Huang J; Yang M; Zhang H; Zhu J
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1323-1332. PubMed ID: 33382573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Ultraviolet Laser-Induced Fluorine-Doped Graphene Achieving Superhydrophobic Properties and Its Application in Deicing.
    Chen Y; Long J; Xie B; Kuang Y; Chen X; Hou M; Gao J; Liu H; He Y; Wong CP
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4647-4655. PubMed ID: 35015501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties.
    Barthwal S; Lim SH
    Soft Matter; 2019 Oct; 15(39):7945-7955. PubMed ID: 31544192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Superhydrophobic Surfaces via the Sand-In Method.
    Chen W; Wang W; Luong DX; Li JT; Granja V; Advincula PA; Ge C; Chyan Y; Yang K; Algozeeb WA; Higgs CF; Tour JM
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35053-35063. PubMed ID: 35862236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Fabrication of Fluorine-Free, Anti-Icing, and Multifunctional Superhydrophobic Surface on Wood Substrates.
    Cao M; Tang M; Lin W; Ding Z; Cai S; Chen H; Zhang X
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.