These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35199512)

  • 1. Extracellular Electron Transfer by
    Chugh B; Sheetal ; Singh M; Thakur S; Pani B; Singh AK; Saji VS
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1049-1059. PubMed ID: 35199512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.
    Jia R; Yang D; Xu D; Gu T
    Bioelectrochemistry; 2017 Dec; 118():38-46. PubMed ID: 28715664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial extracellular electron transfer and its relevance to iron corrosion.
    Kato S
    Microb Biotechnol; 2016 Mar; 9(2):141-8. PubMed ID: 26863985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa.
    Zhou E; Zhang M; Huang Y; Li H; Wang J; Jiang G; Jiang C; Xu D; Wang Q; Wang F
    Water Res; 2022 Jul; 220():118634. PubMed ID: 35691192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer.
    Anguita J; Pizarro G; Vargas IT
    Bioelectrochemistry; 2022 Jun; 145():108058. PubMed ID: 35074731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of galvanized steel biocorrosion by Pseudomonas aeruginosa biofilm using a biocide enhanced by trehalase.
    Xu L; Ivanova SA; Gu T
    Bioelectrochemistry; 2023 Dec; 154():108508. PubMed ID: 37451042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive magnetic nanowires accelerated electron transfer between C1020 carbon steel and Desulfovibrio vulgaris biofilm.
    Alrammah F; Xu L; Patel N; Kontis N; Rosado A; Gu T
    Sci Total Environ; 2024 May; 925():171763. PubMed ID: 38494030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration mechanism of riboflavin on Fe
    Lu S; Zhu H; Xue N; Chen S; Liu G; Dou W
    Sci Total Environ; 2024 Aug; 939():173613. PubMed ID: 38815822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.
    Xu D; Li Y; Gu T
    Bioelectrochemistry; 2016 Aug; 110():52-8. PubMed ID: 27071053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.
    Zhang P; Xu D; Li Y; Yang K; Gu T
    Bioelectrochemistry; 2015 Feb; 101():14-21. PubMed ID: 25023048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of carbon starvation and exogenous redox mediators on corrosion of X70 pipeline steel induced by Desulfovibrio singaporenus.
    Guan F; Liu Z; Dong X; Zhai X; Zhang B; Duan J; Wang N; Gao Y; Yang L; Hou B
    Sci Total Environ; 2021 Sep; 788():147573. PubMed ID: 34034174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limiting nitrate triggered increased EPS film but decreased biocorrosion of copper induced by Pseudomonas aeruginosa.
    Xu Z; Dou W; Chen S; Pu Y; Chen Z
    Bioelectrochemistry; 2022 Feb; 143():107990. PubMed ID: 34763171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.
    Li H; Xu D; Li Y; Feng H; Liu Z; Li X; Gu T; Yang K
    PLoS One; 2015; 10(8):e0136183. PubMed ID: 26308855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling.
    Li Y; Ning C
    Bioact Mater; 2019 Dec; 4():189-195. PubMed ID: 31192994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combined effect of carbon starvation and exogenous riboflavin accelerated the Pseudomonas aeruginosa-induced nickel corrosion.
    Pu Y; Hou S; Chen S; Hou Y; Feng F; Guo Z; Zhu C
    Bioelectrochemistry; 2024 Jun; 157():108679. PubMed ID: 38471411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface roughness influence on extracellular electron microbiologically influenced corrosion of C1018 carbon steel by Desulfovibrio ferrophilus IS5 biofilm.
    Khan A; Xu L; Kijkla P; Kumseranee S; Punpruk S; Gu T
    Bioelectrochemistry; 2024 Oct; 159():108731. PubMed ID: 38759479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of microbial extracellular electron transfer corrosion of marine structural steel with multiple alloy elements.
    Lu S; He Y; Xu R; Wang N; Chen S; Dou W; Cheng X; Liu G
    Bioelectrochemistry; 2023 Jun; 151():108377. PubMed ID: 36731176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm.
    Li Z; Huang L; Hao W; Yang J; Qian H; Zhang D
    Bioelectrochemistry; 2022 Aug; 146():108130. PubMed ID: 35397438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial corrosion of metallic biomaterials in the oral environment.
    Xu W; Yu F; Addison O; Zhang B; Guan F; Zhang R; Hou B; Sand W
    Acta Biomater; 2024 Jun; ():. PubMed ID: 38942189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiologically influenced corrosion: looking to the future.
    Videla HA; Herrera LK
    Int Microbiol; 2005 Sep; 8(3):169-80. PubMed ID: 16200495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.