These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35199641)

  • 1. Creation of photocyclic vertebrate rhodopsin by single amino acid substitution.
    Sakai K; Shichida Y; Imamoto Y; Yamashita T
    Elife; 2022 Feb; 11():. PubMed ID: 35199641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergent evolutionary counterion displacement of bilaterian opsins in ciliary cells.
    Sakai K; Ikeuchi H; Fujiyabu C; Imamoto Y; Yamashita T
    Cell Mol Life Sci; 2022 Aug; 79(9):493. PubMed ID: 36001156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected molecular diversity of vertebrate nonvisual opsin Opn5.
    Yamashita T
    Biophys Rev; 2020 Apr; 12(2):333-338. PubMed ID: 32152922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid residue at position 188 determines the UV-sensitive bistable property of vertebrate non-visual opsin Opn5.
    Fujiyabu C; Sato K; Nishio Y; Imamoto Y; Ohuchi H; Shichida Y; Yamashita T
    Commun Biol; 2022 Jan; 5(1):63. PubMed ID: 35042952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6.
    Han M; Smith SO; Sakmar TP
    Biochemistry; 1998 Jun; 37(22):8253-61. PubMed ID: 9609722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary steps involving counterion displacement in a tunicate opsin.
    Kojima K; Yamashita T; Imamoto Y; Kusakabe TG; Tsuda M; Shichida Y
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6028-6033. PubMed ID: 28533401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
    Vishnivetskiy SA; Ostermaier MK; Singhal A; Panneels V; Homan KT; Glukhova A; Sligar SG; Tesmer JJ; Schertler GF; Standfuss J; Gurevich VV
    Cell Signal; 2013 Nov; 25(11):2155-62. PubMed ID: 23872075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates.
    Devine EL; Theobald DL; Oprian DD
    Biochemistry; 2016 Aug; 55(34):4864-70. PubMed ID: 27486845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue.
    Tsukamoto H; Chen IS; Kubo Y; Furutani Y
    J Biol Chem; 2017 Aug; 292(31):12971-12980. PubMed ID: 28623234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biophysical and Biochemical Research of Animal Rhodopsins].
    Kojima K
    Yakugaku Zasshi; 2021; 141(10):1155-1160. PubMed ID: 34602512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of glutamic acid in the conserved E/DRY triad to the functional properties of rhodopsin.
    Sato K; Yamashita T; Shichida Y
    Biochemistry; 2014 Jul; 53(27):4420-5. PubMed ID: 24960425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-expression of VAL- and TMT-opsins uncovers ancient photosensory interneurons and motorneurons in the vertebrate brain.
    Fischer RM; Fontinha BM; Kirchmaier S; Steger J; Bloch S; Inoue D; Panda S; Rumpel S; Tessmar-Raible K
    PLoS Biol; 2013; 11(6):e1001585. PubMed ID: 23776409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary dynamics of rhodopsin type 2 opsins in vertebrates.
    Yokoyama S; Tada T
    Mol Biol Evol; 2010 Jan; 27(1):133-41. PubMed ID: 19759234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, energetic, and mechanical perturbations in rhodopsin mutant that causes congenital stationary night blindness.
    Kawamura S; Colozo AT; Ge L; Müller DJ; Park PS
    J Biol Chem; 2012 Jun; 287(26):21826-35. PubMed ID: 22549882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-visual photoreception by a variety of vertebrate opsins.
    Kojima D; Fukada Y
    Novartis Found Symp; 1999; 224():265-79; discussion 279-82. PubMed ID: 10614056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket.
    Reeves PJ; Hwa J; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1927-31. PubMed ID: 10051571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
    Tsukamoto H; Terakita A; Shichida Y
    J Biol Chem; 2010 Mar; 285(10):7351-7. PubMed ID: 20053991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.